IN ACCORDANCE WITH NCC VOLUME 2 (SECTION P3.10.1), THIS PRODUCT SATISFIES PERFORMANCE REQUIREMENT P2.1.1 FOR CONSTRUCTION IN A HIGH WIND AREA

SPECIFICATION

This data sheet covers the use of 7.5mm HardieTex™ base sheet textured cladding in residential façade applications over a light-gauge steel frame or a timber wall frame and must be read in conjunction with current James Hardie product literature, namely "HardieTex™ System Installation Guide".

The pre-primed sheets must be coated in accordance with the product literature.

FRAMING & SHEET INSTALLATION

Install base sheets vertically to steel or timber stud-frames as shown in Figure 1 and in accordance with the stud and fastener spacing given in Table 1 and Table 2 depending on the wind load classification or design pressure.

Framing width at sheet joints must be a minimum of 42mm for timber and 38mm for steel. Where the studs at sheet joints are less than this, provide double 35mm wide studs at sheet joints. Ensure that double studs are fastened together and flush at the outside face.

All intermediate support studs must be a minimum of 64 x 35mm deep for metal framing and 70% 35mm for timber

All sheet edges and joints must be supported by framing.

Framing - Steel

The steel wall frame (minimum 64 x 35mm studs) must be in accordance with NCC 2010 Clause 3.4.2.0. Study to be rolled steel sections not exceeding 2mm in thickness.

Framing - Timber:

Use of timber maning must be in accordance with AS 1684. 2010 "Residential timber-framed construction" and framing manufacturer's specifications. Use spasoned timber or else unseasoned hardwood minimu n F14 grade. LVL timber may

Spacing of the M12 cyclone rods to be determined from AS 1684.3: 2010, but never more than 2.4m (pai) if bracing capacity is claimed.

HardieTex base sheets are butted hard to gether with no gaps being left between sheets and the set (recessed-edge) joint is then formed between adjoining vertical edges.

Sheet joints must coincide with the centre line of the framing member (see Figure 2).

FIXING / FASTENERS

Fixings and fastener may be minimum Class 3 finish if concealed and/or sealed, but must be Class 4 if exposed to the elements. Use the following fasteners or approved equivalent fasteners:

Fasteners - Steel Framing:

Use 30mm Buildex FibreTeks® or 32mm HardieDrive® screws.

Notes covering basis of DTC (relevant test reports etc):

Tables for External Cladding Systems in the Northern Territory".

Ltd regarding the outcome of testing cyclic versus static loading.

The nominated structural capacity of the system is based on the following documentation:

reports by Karl Danenbergsons dated 13 April 1995 and Clayton Frick dated 30 June 1995.

James Hardie Advice Note dated 31 July 2010 "Addendum to the June 1995 Submission on the Derivation of Design

James Hardie Submission dated 30 June 1995 "Derivation of Proposed Design Tables for Eaves & Soffit Linings &

External Cladding Systems for Use in the Darwin Deemed-to-Comply Manual", which includes uniform load testing

James Hardie letters dated 7 August 1996 to the NT Building Advisory Services Branch and Colless & O'Neill Pty

Cyclone Structural Testing Station Report No.TS 471 dated 23 July 1996 "Static and Cyclic Uniform Loading of

Fasteners - Timber Framing:

Hardiflex Cladding".

Use a 2.8 x 30mm galvanised fibre cement nail.

TABLE 1: Max Stud & Fastener Spacing for Wind Pressure									
AS 4055 Wind Load	General Areas Of Building			Within 1200mm of Building Edges					
Class	ULS Pressure (kPa)	Stud (mm)	Frstei. (mm)	ULS Pressure (kPa)	Stud (mm)	Fasten (mm)			
C1	-0.98 +1.05	600 or 450	200	-1.95	450	200			
C2	-1.45 +1.56	600 or 450	200	-2.90	450	150			
C3	2.14 +2.30	450	200	-4.27	300	150			
C4	-2.88 +3.11	450	150	-5.77	300	125			

	TABLE 2: Test-Prover	BLE 2: Test-Proven ULS Design Pressure Capacity						
	Stud Spacing (mm)	Fastener Spacing (mm)	ULS Pressure (kPa)					
	600	200	1.8					
	⁴ 50	200	2.8					
	300	200	3.9					
Ì	300	125	6.0					

STRUCTURAL BRACING

Table 3 provides the ULS design bracing capacity of 7.5mm HardieTex[™] sheet when fixed vertically in accordance with Tables 1 or 2 with fastener spacing additionally as per James Hardie's "Structural Bracing Application Guide". Capacities are for wall heights of both 2400mm and 2700mm.

TABLE 3: ULS Design Bracing Capacity								
Framing Details	Max Stud Spacing	Bracing Capacity (kN/m)						
- ranning Dotains	, , ,	Single-Sided	Double-Sided					
Timber framing with M12 cyclone rods	600	5.3	7.3					
Welded steel framing 1.2mm gauge	450	5.8	6.0					
Welded steel framing	450	5.1	7.8					
1.6mm gauge	300	6.6	11.0					

Note: Double-sided means that there is an internal lining of James Hardie fibre-cement sheet of thickness at least 6mm with fasteners spaced at 200mm maximum throughout the sheets. Refer also the James Hardie DTC sheet for structural bracing.

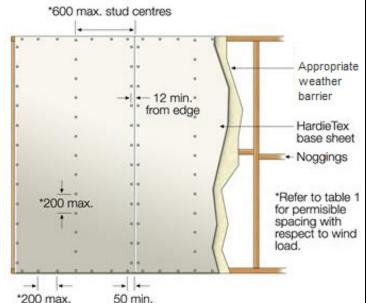


Figure 1: Sheet Fastening Spacing (fixing to noggings not required)

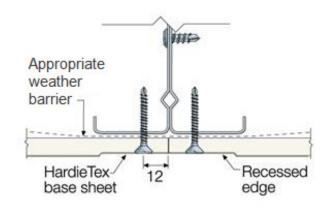


Figure 2: Sheet Joint on Steel Framing at Double Stud (thermal break, not shown, may be required)

DETAILS & OTHER MATTERS

Name:

Date:

Signature:

More extensive construction and jointing details and coating requirements are provided in current James Hardie literature for the HardieTex cladding system. Refer also to the Warranty for the system in that literature.

For further details on matters such as an appropriate weather barrier (eg vapour permeable sarking), thermal break, flashing, system accessories and finishing, refer to current James Hardie technical literature for the HardieTex cladding system, the NCC or relevant Australian Standards.

NT Rego Number: 58478 ES

**Certifying Engineers Certification

DAVID BENEKE

15 October 2020

*registered as a structural engineer in Northern Territory

Product Name:

HARDIETEX™ CLADDING SYSTEM

Product Description:

7.5mm External Cladding for Walls

Manufacturer's Name:

James Hardie Australia Ptv Ltd 10 Colguhoun Street, Rosehill NSW 2142

Design Criteria:

[1] General

All design and construction must comply with the appropriate requirements of the current National Construction Code (NCC) and other applicable regulations and standards.

[2] Wind Loading

The cladding sheet must be fastened to the frame in accordance with Table 1 for the different wind classifications, which are taken from AS 4055: 2012 "Wind Loads for Housing". The effective design wind speeds are given in Table 2.1 of AS 4055.

For design to AS/NZS 1170: 2011 Part 2 "Wind Actions", the test proven ULS design capacity of the system is given in Table 2, noting that an ULS material capacity reduction factor ('phi') is implicitly included and no further factoring of the design capacity is needed.

Limitations:

[1] HardieTex base sheet is an external wall cladding for residential use only. This cladding has been designed for external pressure and suction loadings only. The designer must ensure that the framing is capable of resisting simultaneously the internal and external design pressures (ie an internal lining is required).

[2] To use Table 1, the design must comply with geometric limits given at Clause 1.2 of AS 4055: 2012 (eg max eaves height = 6m and max building width = 16m), except as varied by the design engineer.

[3] Fastening: All fasteners specified must be driven flush. Do not fix fasteners closer than 12mm from panel edges, or closer than 50mm from sheet corners.

Accepted for Inclusion

DTCM ref: M/723

Chairman's Signature:

Chairman's Name:

Paul Nowland

Date of Approval: **Expiry Date:**

16/10/2020 16/10/2025

PRAVEEL PRASAD

Cardno (NSW/ACT) Pty Ltd

Rego Number: **IEAUST 923657**

Date: 14 October 2020

Signature:

*Design Engineers Certification

Name:

registered as a structural engineer in Australia