

Daly Basin Drilling, 2010

Report 24/2010 S. Tickell Darwin August 2010

Bibliographic Reference

Tickell, S., (2010), Daly Basin Drilling, 2010 Northern Territory Government Department of Natural Resources the Environment The Arts and Sport, Technical Report No. 24/2010D ISBN: 978-1-921519-91-8 For further information contact: Department of Natural Resources the Environment, The Arts and Sport PO Box 496, Palmerston, NT, 0831 Australia

Copyright and Disclaimer © 2008 Northern Territory Government Copyright resides with the Northern Territory Government, 2006. Information contained in this publication may be copied or reproduced for study, research, information, or educational purposes,

subject to inclusion of an acknowledgment of the source.

Cover photo: Outcrop of the basal limestone of the "Florina Formation" with seepage along bedding planes, Zone 52, East 8379986, North 145087, Datum WGS84

CONTENTS

Summary	. 1
ntroduction	
Observations	.2
Drilling	.2
Aquifers	
Groundwater Chemistry	
Discussion	
Geology	.4
Aquifers	.6
Groundwater Chemistry	
References	

Figures

- 1. Bore locations
- 2. Gamma log cross-section between RN37042 and RN37043
- 3. Interpreted pre-Cretaceous geological map
- 4. Interpreted geological map

Plates

- 1. RN37042, 103 104.6m
- 2. RN37042, 115 116.3m
- 3. RN37042, 117.2 118.2m
- 4. RN37042, 122.6 123.9m
- 5. RN37043, 201 202m
- 6. RN37043, 208.8 210m
- 7. RN37043, 218 219m
- 8. RN37043, 230 230.8m

Tables

- 1. Formation tops and water levels
- 2. Summary of drilling operations in RN37043
- 3. Groundwater chemistry

Appendicies

- 1. Graphic logs
- 2. Drillers "statement of bores" sheets
- 3. Cuttings descriptions

Summary

Four investigation/monitoring bores were drilled on and adjacent to Florina Station. The main findings are that the work established the presence of a newly recognised formation, the "Florina Formation" within the Daly River Group. It disconformably overlies the Oolloo Dolostone and it contains substantial aquifers that are stratigraphically controlled. Limited potential for recharge reduces the potential for significant throughflow and discharge. Minor spring discharge occurs in the Daly and Katherine Rivers. Only the basal limestone is in hydraulic connection to the Oolloo aquifer. The main body of the formation acts as a confining layer to the Oolloo.

The Oolloo aquifer formed as a result of a karstic weathering event that occurred when the formation was exposed to the atmosphere prior to the deposition of the "Florina Formation". Karstification (and so the aquifer) extends to depths as great as 80 metres below the top of the formation. Two styles of solution cavities are developed in the Oolloo, localised centimeter to decimetre scale cavities along fractures and bedding planes and a more pervasive network of sub- millimetre to centimetre scale cavities.

Introduction

Four investigation / monitoring bores were drilled in the Daly Basin as part of the National Water Commission funded Oolloo Springs Project. The work took place between May and July 2010. The locations of the drill sites are shown in Figure 1. They are in the south central part of the Daly Basin, an early Palaeozoic aged basin containing mainly carbonate rocks. It contains three formations. From oldest to youngest they comprise; the Tindall Limestone, the Jinduckin Formation (siltstone with minor limestone beds) and the Oolloo Dolostone. The Oolloo Dolostone, the focus of the current study is a major aquifer which supplies the bulk of the base flow of the Daly River. It is also utilised as a source of groundwater for irrigation and stock.

This work has two main aims:

- 1. Improve the coverage of regional water level monitoring bores in the Oolloo aquifer.
- 2. Establish the nature and stratigraphic relationships of a newly recognised formation that is thought to overlie the Oolloo Dolostone. RN36812 was drilled in 2009 for this purpose but drilling problems caused it to be stopped short of its target depth.

Graphic logs that summarise the geologists description of the cuttings, water intersections, gamma log and construction of each hole are included in Appendix 1. The formation boundaries were derived from all these sources as well as from the drillers log. Formation tops and thicknesses; and water levels for each bore are summarised in Table 1. The drillers "Final Statement of Bore" sheets are in Appendix 2, while geologists descriptions of cuttings are in Appendix 3. Plates 1 to 7 are selected images taken by a down-hole optical scanner. They give a 360⁰ view of the inside of the borehole walls. The boreholes were 149mm diameter in the sections that

were imaged. The images are oriented relative to magnetic north, with the left hand margin facing 0^0 , the centre facing 180^0 and the right hand margin facing 360^0 . The left and right margins are therefore the same point on the borehole wall.

Observations

Drilling

RN37041: This was the first hole drilled and is situated on Florina Station, adjacent to the Daly River. It was drilled using an air hammer to a depth of 162m, where circulation was lost. Mud drilling was then tried but circulation could not be regained. Another problem with the hole was that the upper 50 metres was in soft unstable formation. This resulted in the formation outside of the surface casing and its cement seal being breached by the air stream moving up the hole. There was potential for the ground surrounding the hole to become unstable so drilling was discontinued. The target formation, the Oolloo Dolostone was not reached.

Thin sandy soil overlies Cretaceous aged clayey sand, sandstone and sandy clay which extend to a depth of 25 metres. The Cretaceous strata in turn overlie a sequence of fine grained glauconitic sandstone and limestone. The sandstone contains thin shale and limestone beds. A prominent limestone was struck between 86 and 105 metres. Aquifers were encountered at three intervals between 61 and 117 metres in both sandstone and limestone. Note that drill chips were highly contaminated by caving from the upper part of the hole. Formation depths were taken from the nearby hole RN37043. The hole was completed as a monitoring bore with 100mm PVC slotted between 59.9 and 64.9 metres adjacent to an aquifer in glauconitic sandstone.

RN37042: This hole is situated 10 kilometres south east of RN37041 where it was hoped that the Oolloo Dolostone would be shallower. It was drilled with an air hammer and Oolloo was struck at 92 metres. The hole was then cased and drilling continued to the depth of 129.3 metres. The open hole below the casing was temporally backfilled with drill cuttings and the casing cemented into place. The cement plug was later drilled and the backfill removed. The section below the casing was left uncased in order to run a down-hole optical scanner.

An aquifer was encountered in glauconitic sandstone at 45 to 48.6 metres. The sandstone in that interval is medium grained and has visible intergranular porosity. No water was encountered in the gray finely crystalline limestone that directly overlies the Oolloo Dolostone. The main water intersection was in the Oolloo Dolostone with an airlift yield in excess of 20 L/sec over the whole of the section exposed in the borehole.

RN37043: After proving the presence of Oolloo Dolostone in RN37042 it was decided to have another attempt to reach that formation at the first site (RN37041). RN37043 is located 37 metres north east of RN37041. In order to avoid the problems encountered in the first hole several strings of progressively narrower diameter casing were telescoped as the hole was deepened. The main stages involved in drilling the hole are listed in Table 2.

The Oolloo Dolostone was struck at 192 metres. It is directly overlain by a gray medium to coarsely crystalline limestone, which in turn is overlain by the glauconitic sandstone that RN37041 finished in. The clayey interval at the top of the formation from 25 to 39 metres represents decomposed glauconitic sandstone and shale. The hole was completed in a similar manner to RN37042 with steel casing run to the top of the Oolloo Dolostone and a cement plug installed. The plug was drilled and the hole beneath was also left uncased in the Oolloo Dolostone in order to run a downhole optical scanner.

RN37044: This site was drilled to fill a gap in the regional monitoring network for the Oolloo aquifer. It encountered 18 metres of Cretaceous clay and sandstone and then passed into the bedded unit of the Oolloo Dolostone and struck Jinduckin Formation at 124.5 metres. The hole was continued to a depth of 215.5 metres in order to obtain a sufficient depth of gamma log and so establish the precise stratigraphic position of the strata. The Oolloo Dolostone only encountered seepage but minor water intersections were found in the Jindickin Formation. The hole was left uncased below 49.6 metres to enable a down-hole optical scanner to be run at a later date.

Aquifers

Aquifers were encountered in all of the units within the "Florina formation" (see "Discussion" below) with the exception of the uppermost limestone. That unit has yet to be been drilled.

The "Florina formation" sandstones have airlift yields up to 10 Litres/sec even at depths as great as 150m. Water intersections occur at specific levels within the formation. These aquifers are most likely fractured rock types but primary porosity is occasionally present. Some sandstone is calcareous and the drill chips also show rare examples of secondary porosity where calcium carbonate has been removed by solution.

The limestone units of the "Florina formation" have airlift yields up to 15 Litres/sec. No water was encountered in the basal limestone in RN37042. The aquifers are developed in fractures enlarged by solution. No significant cavities were struck. Tickell (2008) noted numerous springs in the Daly River adjacent to the outcrop zone of the lower limestone suggesting that it hosts a significant aquifer.

The Oolloo Dolostone hosts a major karstic aquifer. Airlift yields were in excess of 10 Litres/sec. Note that the boreholes were only 149mm diameter through the aquifer so yields could be potentially much higher through a larger diameter borehole. The down-hole optical images indicate that the aquifer comprises localised, moderate sized solution cavities (centimeter to decimetre) and a more pervasive set of fine scale cavities (sub-millimetre to centimetre). The larger cavities were all present in the upper 25 metres of the formation. Ones with sharp, straight edges are dominantly vertical and appear to be formed on fractures (Plates 6 and 7). Some fractures show only minor enlargement by solution (Plate 8). Cavities with smoother curved edges appear to have formed preferentially along bedding planes (Plate 1). Caliper logs run in the holes detected the main cavernous zones seen on the down-hole images.

The finer scale cavities (Plates 2, 3 and 5) occur throughout the drilled section of the Oolloo Dolostone but are more common in the upper 25 metres of the formation. Outcrops and drill cuttings suggest that they are interconnected to some degree, contributing to the permeability and storage of the aquifer. They are partly controlled by lithology because in places they are more common along particular beds (Plate 3). As well as dissolution of dolomite some deposition of secondary calcite and dolomite has taken place as veins (Plate 7), as stockworks (Plate 8) and as crystals lining cavities and fractures.

Shale beds up to 0.25 metres thick were intersected in RN37042. In some cases they are undisturbed (Plate 2) while in others they have been disrupted by solution and collapse in the underlying dolostone (Plate 4), creating pathways for the vertical movement of groundwater through the shales.

The bores were all constructed as water level monitoring bores but as yet have not been levelled to AHD. In the case of RN37042 and RN37043 the standing water levels in the Oolloo aquifer are close to or above the adjacent river bed. Detailed analysis of the water levels must await levelling of the bores.

Groundwater Chemistry

The water analyses listed in Table 3 were taken during the drilling operations and were all airlifted. The bores were typically airlifted for about 10 minutes before the sample was taken. The samples taken after the bores were constructed were airlifted until the water cleared noticeably. These include the samples from 59.9m in RN37041, 101.5 metres in RN37042, 230m in RN37043 and 205m in RN37044. The lower turbidity of these samples reflects the longer airlift time. The two main aquifers sampled were the "Florina formation" and the underlying Oolloo Dolostone. Two of the "Florina formation" samples were a mixture of waters from limestone and sandstone units.

Analyses of four groundwaters from the "Florina formation" sampled prior to the current drilling program are also included in Table 3 for comparison.

Discussion

Geology

Reconnaissance geological mapping along the Katherine and Daly Rivers (Tickell, 2008) identified a sequence of three limestones separated by two glauconitic sandstone units. At that time it was tentatively assigned to the Jinduckin Formation because the limestone resembled the well bedded limestones found in that formation. The glauconitic sandstone is however uncharacteristic of the Jinduckin Formation. The rocks are marine in origin and the uppermost limestone contains Palaeozoic fossils. This suggests that the sequence is related to the Cambro-Ordovician aged Daly River Group.

RN37043 was sited adjacent to the stratigraphically highest part of the sequence exposed in the Daly River. The name "Florina formation" is used here informally to

describe the sequence in RN37043 in the interval 25 to 192 metres. The unit will be formalised in the near future in conjunction with the Northern Territory Geological Survey. Both RN37042 and RN37043 passed through the "Florina formation" into Oolloo Dolostone proving that it is a new formation within the Daly Basin sequence and that it is younger than the Oolloo Dolostone (Figure 2). A similar sequence to the Daly River outcrops was encountered in RN37043. An exception was that the uppermost limestone unit of the "Florina formation" was not intersected by RN37043 despite being only 0.5 km east of the outcrop. Cretaceous clay and sand are present down to 25 metres depth, the level at which the limestone was expected.

The "Florina formation" shows a pattern of cyclic sedimentation. Each cycle begins with limestone which passes abruptly upwards into a thicker sequence of glauconitic sandstone with minor shale interbeds. Two complete cycles are present but only the limestone of the third and youngest cycle is preserved. Details of lithologies, sedimentary structures and fossils are not visible in the drill chips but were observed in nearby outcrops.

The limestones are predominantly very well bedded calcilutites and minor calcarenite and intraclast conglomerates (breccia). Beds appear to be laterally continuous over distances of ten's of metres. Some sections contain up to 20% detrital quartz and minor glauconite pellets. Trace fossils including horizontal feeding trails and vertical burrows are common but macro-fossils including brachiopods, gasteropods, hyoliths and nauteloids were only observed in outcrops of the uppermost limestone.

The sandstones are fine to medium grained, typically with around 5% glauconite pellets. Shaley laminae and thin shale interbeds are common. Some of the sandstones are slightly calcareous. They are well bedded with beds ranging in thicknesss up to 0.5 metres and some are laterally discontinuous. Horizontal feeding trails are common. The sandstones show broad trough type current bedding and wave ripple marks.

Reconnaissance geological mapping together with borehole data were used to interpret the extent of the "Florina formation", including the constituent limestone and sandstone units. From oldest to youngest the units are informally referred to as "Limestone 1", "Sandstone 1", "Limestone 2", Sandstone 2" and "Limestone 3". Figure 3 shows the extent of the "Florina formation" with the overlying Cretaceous strata removed. Note that there are large gaps in the data used to make the map and so it is highly speculative in most areas. Figure 4 includes the Cretaceous strata and shows that the outcrop of the "Florina formation" is limited to a relatively small area.

RN37043 encountered 165 meters of the "Florina formation" but in RN37042 which is located 10 km to the south and up dip of RN37043, only 92 metres is present (Figure 2). The base of the formation dips at about 0.5^{0} to the north between the two boreholes. The "Florina formation" and the underlying Oolloo Dolostone appear to be conformable but the highly karstified and dolomitised nature of the upper section of the Oolloo suggests that it was subjected to a weathering event prior to the deposition of the "Florina formation". The two formations are therefore most likely disconformable.

In the upper section of the Oolloo Dolostone which was the part drilled in RN37042 and RN37043, finer scale bedding has been largely destroyed by recrystallisation of the dolomite. Bedding can only be seen where a contrasting lithology such as the thin shales are present. The limestone has been homogenised to a coarsely crystalline dolostone. The rock is a moderate red, coarsly crystalline dolostone which grades downward to a pale red, medium crystalline dolostone. Outcrops of deeper sections of the formation are well bedded with a variety of sedimentary structures visible. Two units; the "massive" and "bedded" units recognised in outcrops by Tickell (2001) represent respectively the recrystallised and karstified rock and the less altered rock beneath. The contact between the two is likely to be transitional. The section drilled in RN37042 and RN37043 represent the "massive" unit, while the section drilled in RN37044 belongs to the "bedded" unit.

Aquifers

Aquifers in the "Florina formation" are separated by thick sections with no water intersections. The aquifers may be laterally extensive and are confined. Groundwater movement is governed by bedding so there is little opportunity for groundwater to move vertically through the formation. Cretaceous sediments, including a basal shale layer overlie and confine most of the "Florina formation". Recharge is limited to the few areas where the aquifers intersect the surface, especially those away from the rivers with higher elevation. Discharge occurs in the Katherine and Daly Rivers as reflected by the distribution of springs (Figure 4).

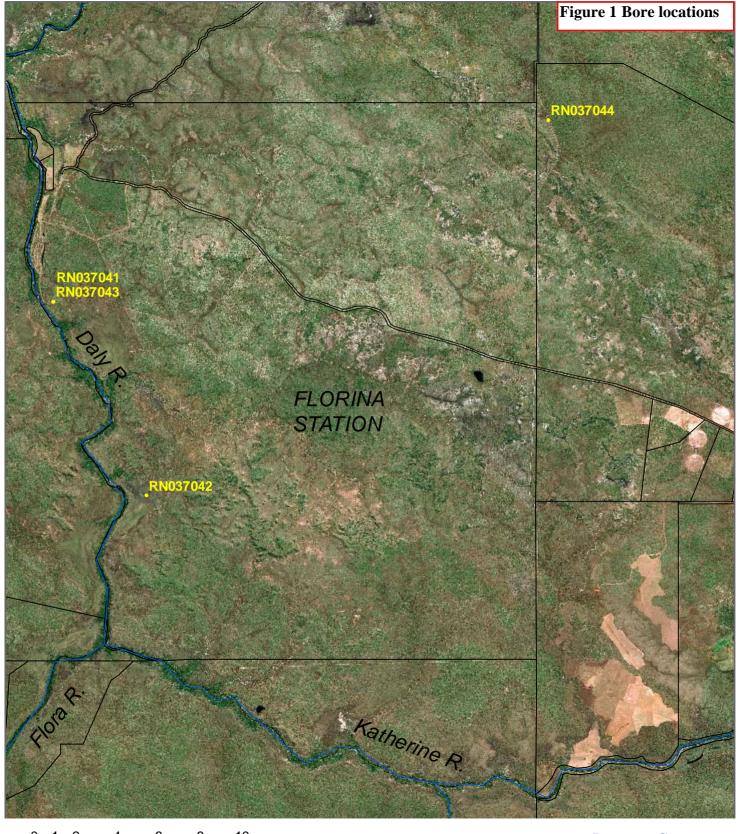
The Oolloo Dolostone is overlain by the basal limestone unit of the "Florina formation". Both units are aquifers and are in direct hydraulic connection with each other. The presence of abundant springs and seepages in the Daly River where it crosses the outcrop zone of the basal limestone suggests that that unit hosts a significant aquifer. Stream flow measurements in that area in October 2009 indicated that the springs contributed about 0.3 cumecs to the Daly River (Wagenaar and others, 2009) Downstream of there only isolated springs are associated with higher units of the formation. The main body of the "Florina formation" acts as a confining layer for the Oolloo aquifer.

The Oolloo itself is a much more substantial aquifer because it was formed as a result of the dolomite being exposed to weathering not long after its deposition. The weathering and dissolution associated with this event extends to considerable depth and occurred over the present extent of the formation. The current drilling (RN37042 and RN37043) only penetrated less than 40 metres below the top of the formation but water bores on Taylors Park (NT Portion 1349), located 20 km to the east encountered significant aquifers at up to twice that depth below the top of the formation.

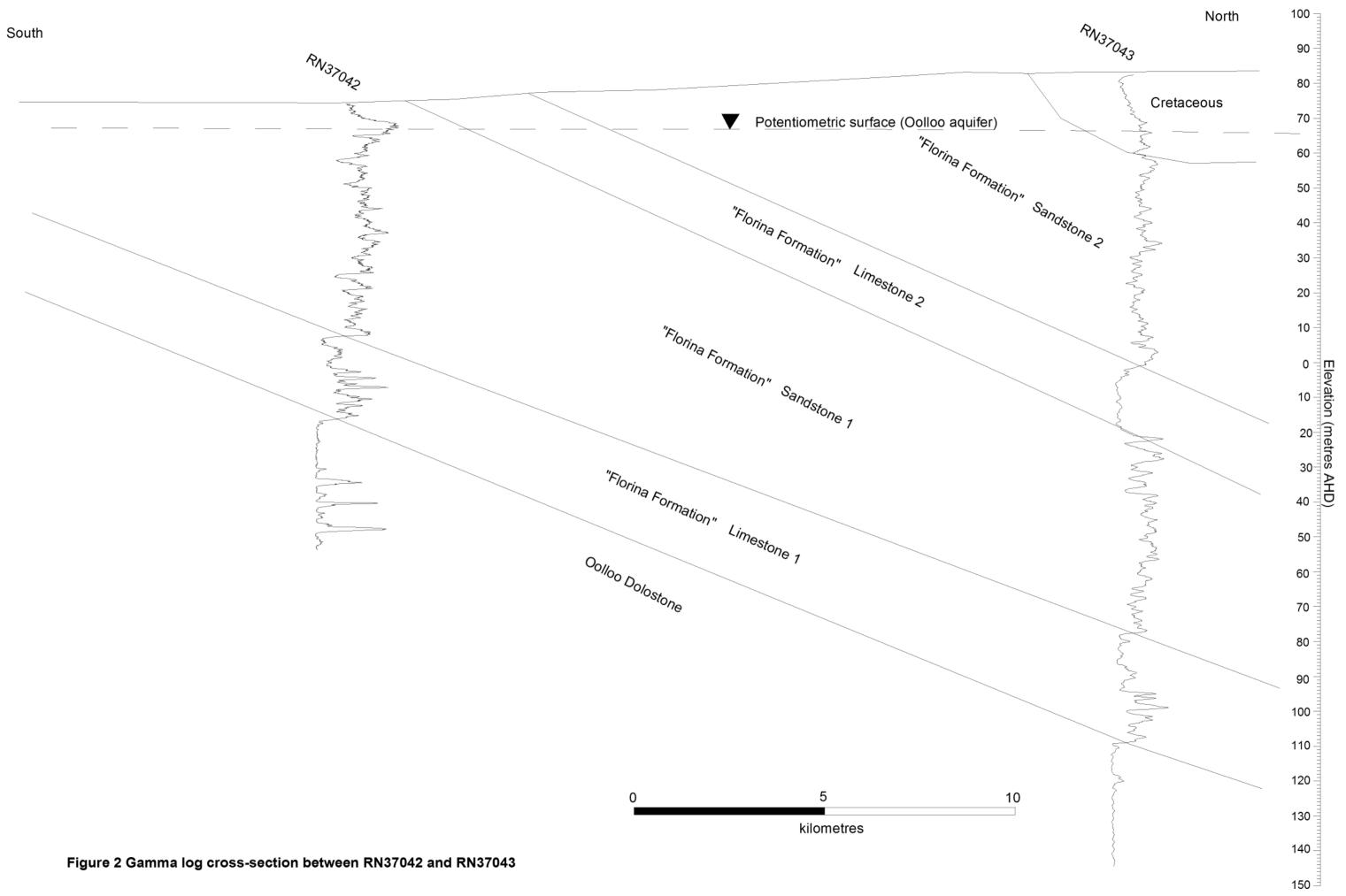
Groundwater Chemistry

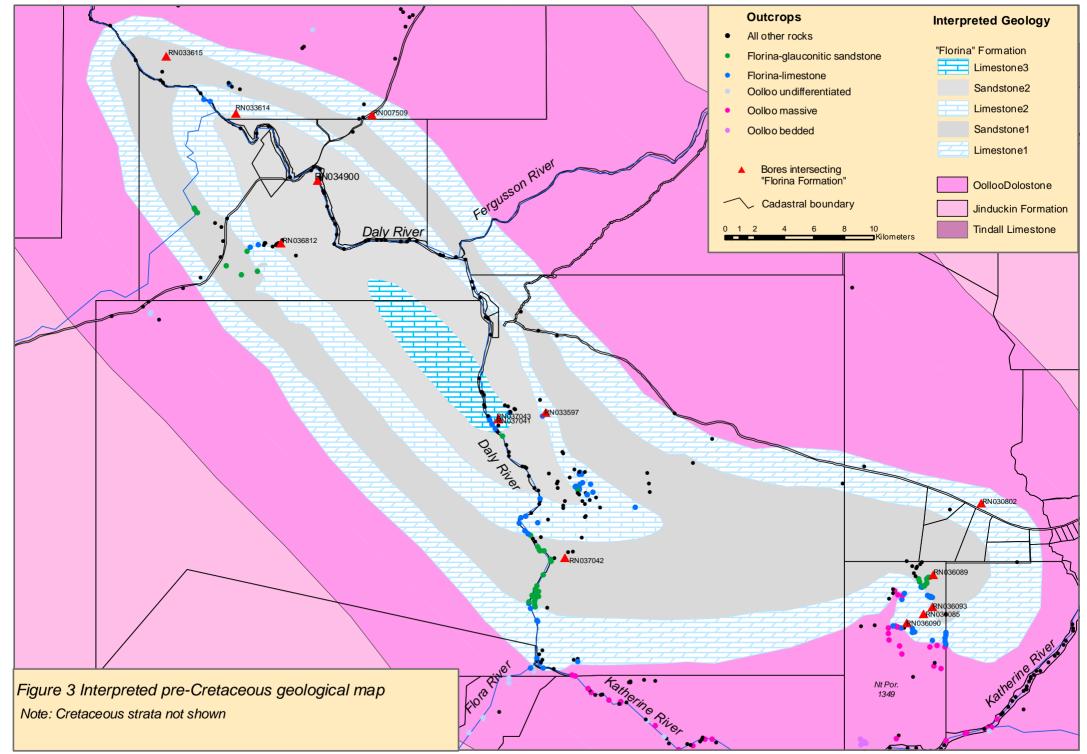
Groundwaters from the Oolloo Dolostone, the Jinduckin Formation and from limestone units of the "Florina formation" have chemical compositions typical of those from carbonate rocks. TDS ranges from 300 to 400mg/L, they are alkaline and they have high hardness. Calcium and magnesium are the dominant cations while bicarbonate is the dominant anion. Chloride, sulphate, sodium and potassium concentrations are all relatively low. Groundwaters from the sandstone units of the "Florina formation" are also calcium/magnesium bicarbonate type waters but they show a lesser and a more variable degree of influence from carbonate rocks. Hardness ranges from 60 to 255mg/L, compared to 293 to 368 in the limestones and dolostones. The degree of hardness is presumably related to the carbonate content of the sandstone which is seen from the drill chips to vary considerably. The sample of water from the Jinduckin Formation in RN37044 has a slightly elevated sulphate concentration (38 mg/L) which is characteristic of that aquifer and is related to the presence of primary anhydrite in the rock.

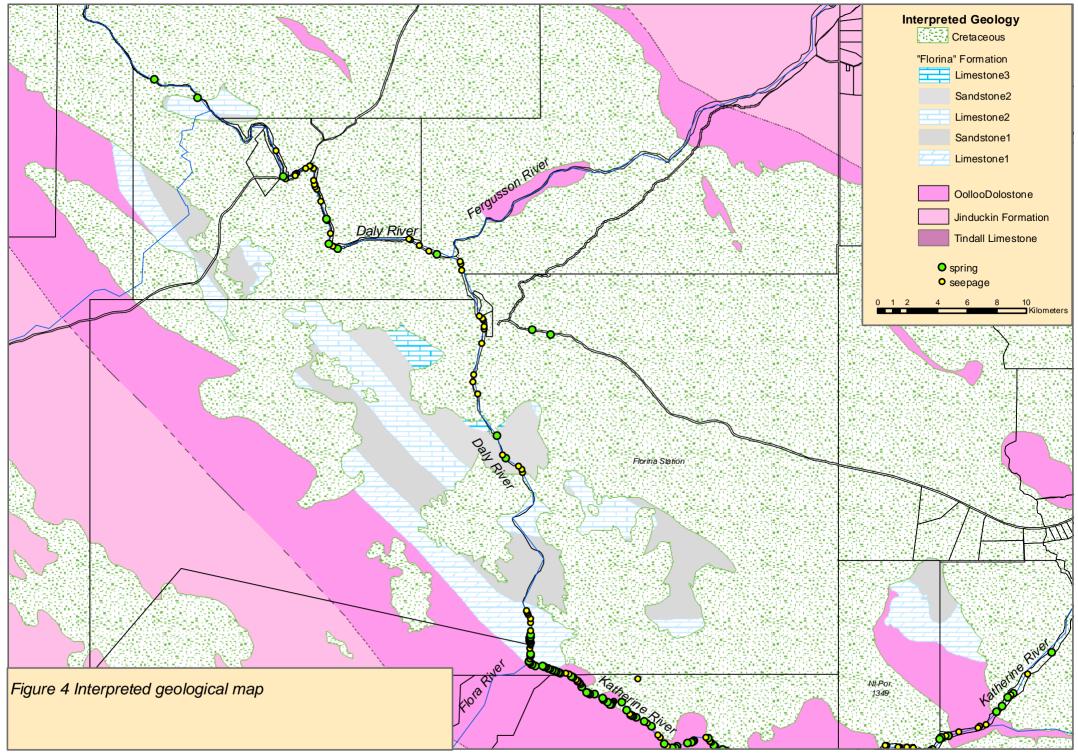
One water analysis is significantly different from the others. The sample from 24.6 to 25.8 metres in RN37041, from a Cretaceous aquifer has a higher TDS (680 mg/L), a lower pH (6.9), low bicarbonate (22mg/L) and a high chloride (302mg/L). Similar waters were encountered in Cretaceous aquifers in the Stray Creek area (Tickell, 2009). The elevated chloride and TDS in that case was attributed to evaporative concentration associated with a low recharge rate. The same mechanism


References

Tickell, S.J., 2001 Groundwater resources of the Oolloo Dolostone. Report 17/2002. Natural Resources Division, Northern Territory Department of Infrastructure, Planning and Environment.


Tickell, S.J., 2008 A survey of springs and rapids along the Katherine and Daly Rivers. Report 4/2008. Water Resources Division, Northern Territory Department of Natural Resources Environment the Arts and Sport


Tickell, S.J., 2009 Daly basin Drilling, 2009. Report 8/2009. Water Resources Division, Northern Territory Department of Natural Resources Environment the Arts and Sport


Wagenaar, D., Ahern, J., Lowe, H. and Boland, T., 2009 Daly low flow gaugings Report 21/2009. Water Resources Division, Northern Territory Department of Natural Resources Environment the Arts and Sport

0 1 2 4 6 8 10 Kilometers

PLATES Down-hole optical scanner images

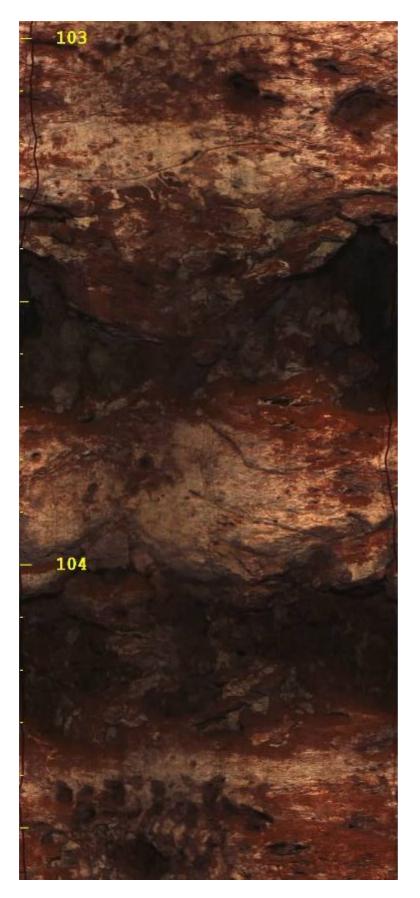


Plate 1 RN37042, 103 - 104.6m, down-hole optical scanner image

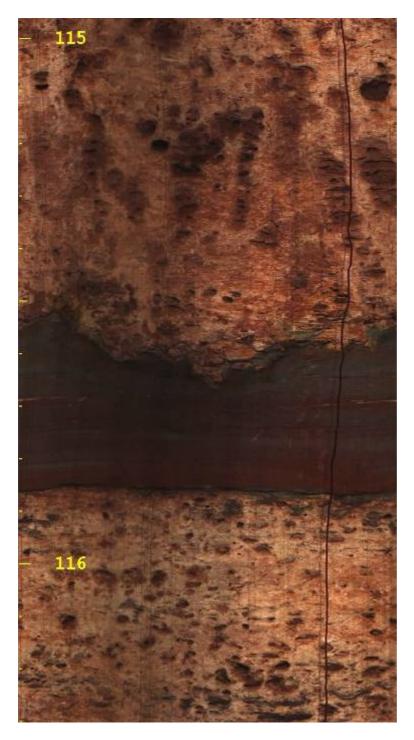


Plate 2 RN37042, 115 - 116.3m, down-hole optical scanner image

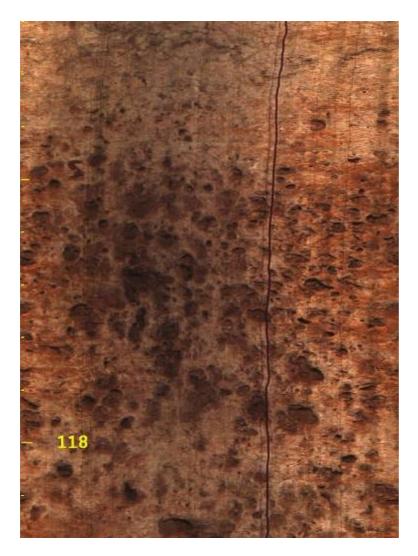


Plate 3 RN37042, 117.2 – 118.2m, down-hole optical scanner image

Plate 4 RN37042, 122.6 - 123.9m, down-hole optical scanner image

Plate 5 RN37043, 201 – 202m, down-hole optical scanner image

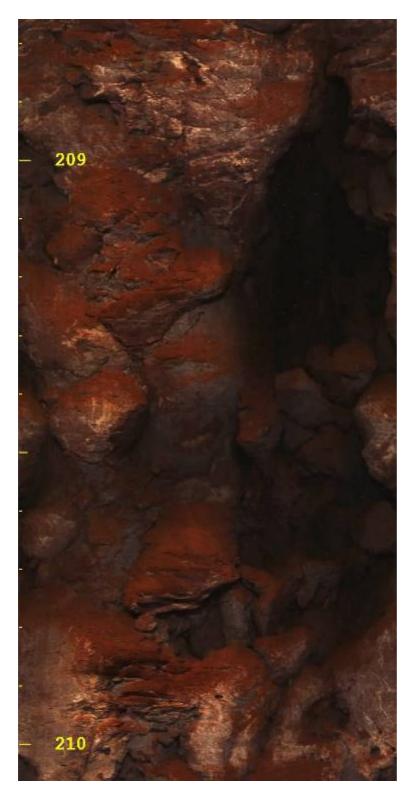


Plate 6 RN37043, 208.8 - 210m, down-hole optical scanner image

Plate 7 RN37043, 218 - 219m, down-hole optical scanner image

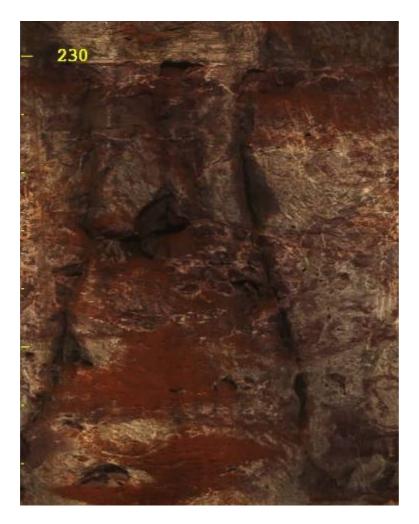
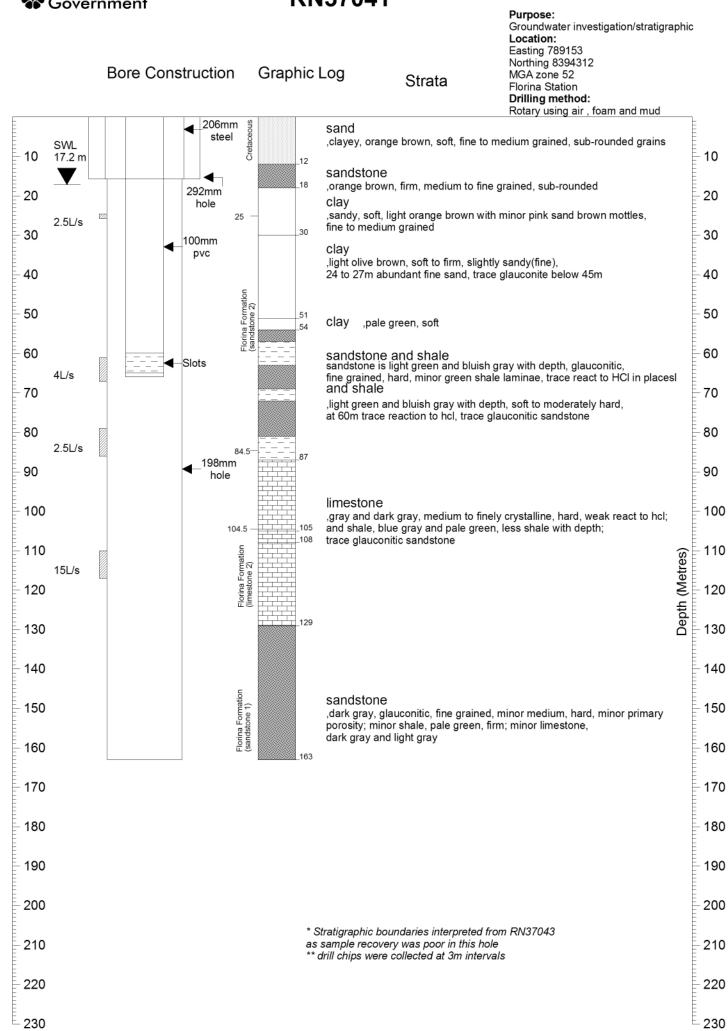


Plate 8 RN37043, 230 - 230.8m, down-hole optical scanner image

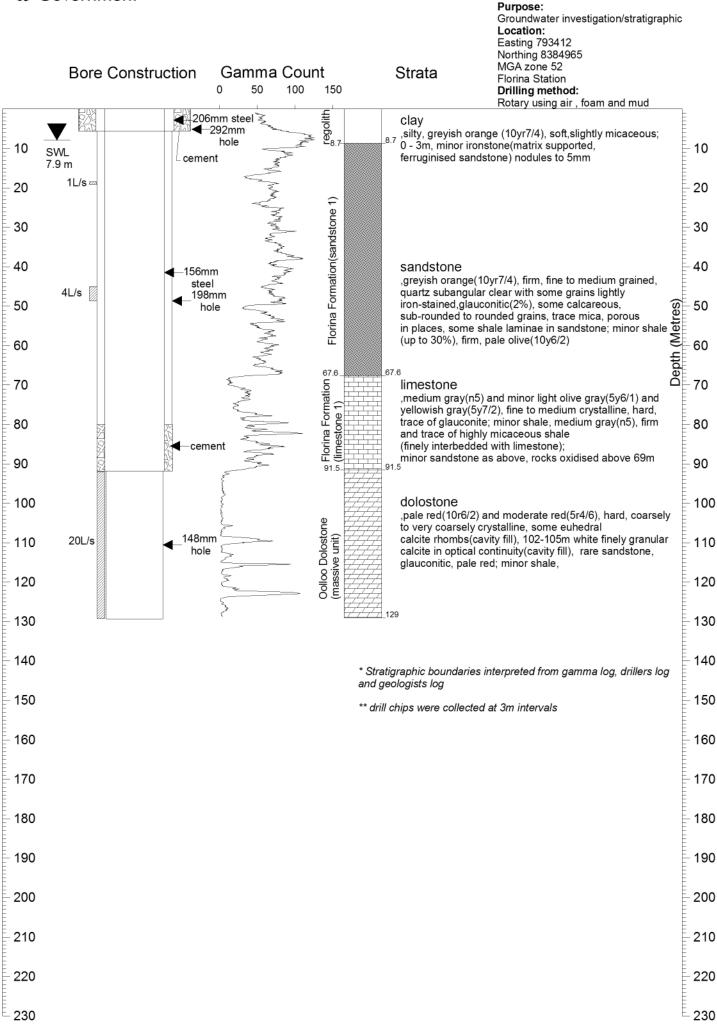
Table 1 Formation tops and water levels

Site	Date Completed	Totallo (Tree	Ground Level	SUT VE JITS METROD	Defe Sur Treasured	Stoline is store oin	(There's be that a for a	stres still state	Crefaceous	¢lo ^{rina}	Oolloo Dologione	SINGLICKIN	Actiliter Scieeneer
										(metres b	below ground level)		
RN037041	27/05/2010	162.9	83	GoogleEarth	2/07/2010	0.5	18.0	65.5	0	25			Florina
RN037042	4/06/2010	129.3	75	GoogleEarth	2/07/2010	0.40	8.63	66.8		0	91.5		Oolloo
RN037043	17/06/2010	230.0	83	GoogleEarth	2/07/2010	0.30	17.43	65.9	0	25	192		Oolloo
RN037044	10/07/2010	215.2	148	GoogleEarth	10/07/2010	0.55	66.5	82.1	0		18	124.5	Jinduckin/Oolloo

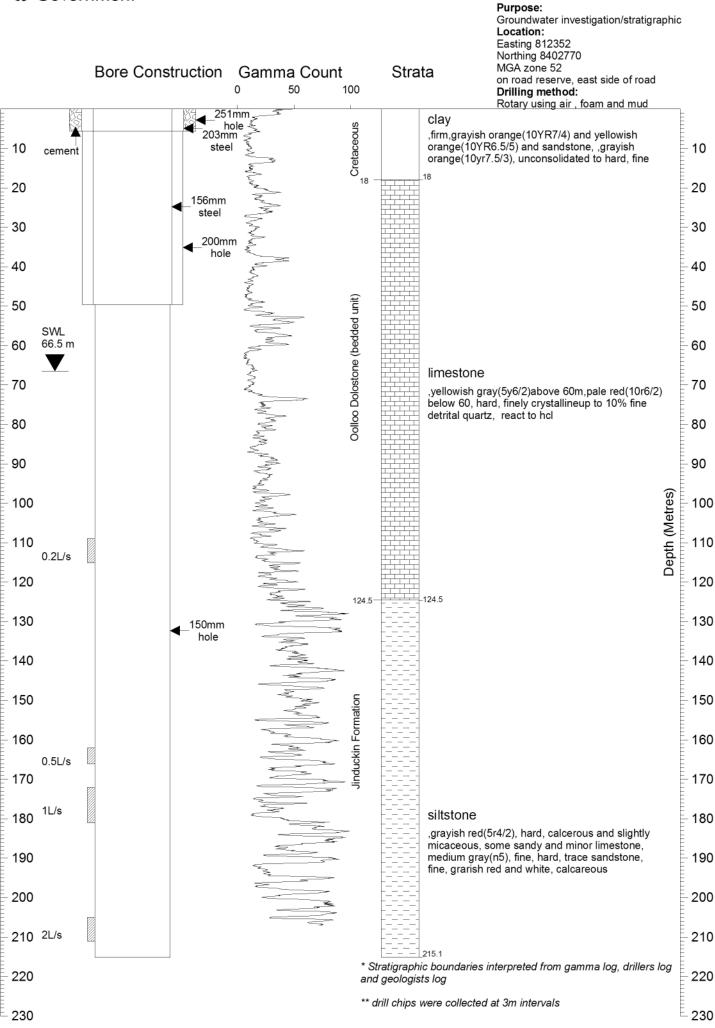
From(m)	To(m)	Fluid	Bit	Casing	Remarks
0	5.6	air	330mm claw	, v	drilling
				258mm	
0	5.6			steel	Casing cemented back to surface
5.6	20	air	251mm blade		drilling, too hard for blade bit @20m
			251mm rock		
20	32.9	air	roller		drilling, lost circulation 29.9-31.6m
			251mm rock		
32.9	46.6	mud	roller		drilling
0	40.0			206mm	
0	46.6		100,000,000	steel	run casing
46.6	126.5	air	198mm hammer		drilling, too much water for hammer
40.0	120.5	ali	Папппе	150mm	
0	127.1			steel	run casing
Ŭ			150mm	0.000	lan baonig
127.1	192.8	air	hammer		drilling, too much water for hammer
			149mm rock		
192.8	194.7	air	roller		drilling
					remove 150mm casing
			200mm rock		
46.6	196.3	air	roller		ream hole
_				150mm	
0	197.7			steel	run casing, cement base
4077	000		150mm		1.212 and the second sector for the
197.7	208	air	hammer		drilling, too much water for hammer
208	230	air	149mm rock roller		drilling
200	230	all	TUILET		
					remove 206mm casing


Table 2 Summary of drilling operations in RN37043

SITE	PN37047	PN37047	PN37042	PN32042	PN37043	PN37043	AN37043	PN3DOR3	AN3DOR3	AN37043	RN3PORA	AN. SEBTA	ANJEBIZ	ANGERIA	AN3359>
Date	21/05/10	27/05/10	29/05/10	03/06/10	09/06/10	11/06/10	12/06/10	16/06/10	16/06/10	16/06/10	10/07/2010	7/10/2009	20/10/2009	21/10/2009	22/08/2003
pH	6.9	8	7.5	7.8	7.9	8	8	8.2	8.1	8.1	8.4	6.7	7.5	7.6	7.8
EC(µS/cm)	1100	477		676	591		571	516	702	632	484	183	557		
Alkalinity(mg/L)	22	264		393	344		331	312	399	353	205	78			
CO3(mg/L)	<1	<1		<1	<1		<1		<1	<1	5				
HCO3(mg/L)	22	264	4	393	344		331	312	399	353	200	78			
OH(mg/L) Turbidity(NTU)	<1 >4000	<1 170		<1 24	<1 350		<1 83		<1 56	<1 14	<1 130	<1 3930	<1 400		
TSS(mg/L)	7860	170		<10	320		70		40	<10	250	1980	220		
TDS(mg/L)	680	270		380	340		300		40	340	250	150	350		
NO2_N(mg/L)	< 0.005	<0.005		< 0.005	<0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005		
NO2(mg/L)	< 0.02	< 0.02		< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		
NO3_N(mg/L)	0.29	< 0.005	< 0.005	0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.045	< 0.005	0.005	< 0.005	< 0.005	0.07	
NO3(mg/L)	1.3	< 0.02		0.04	< 0.02	< 0.02	< 0.02	< 0.02	0.2	< 0.02	0.04		< 0.02	0.32	0.33
Cl(mg/L)	302	8.6		5.5	6.1		8.6		8.2	7.9	7.9				
PO4_P(mg/L)	0.02	0.005		0.01	0.01		0.01	0.01	0.01	0.01	< 0.005	0.005	0.035		
NH3_N(mg/L)	0.02	0.015	0.025	<0.005	< 0.005		<0.005	<0.005	0.03	< 0.005	0.005	0.09	0.215		
F(mg/L)	0.5	0.3		0.1	0.4		0.1	0.1	0.1	0.1	2	1.1	0.8		
Hardness(mg/L) Na_F(mg/L)	116	243 6.3		363 5.4	312		293 7.2		368	323 7.1	224 7.6	75.8	337		
Ca_F(mg/L)	133	46.9		64.5	57.2		51.8	25.1	74.2	58.2	41.7	10.7	5.1		
K_F(mg/L)	0.7	40.9		3.1	4.7		4.9		4.1	3.9	8.1	7.1	40.1		
Mg_F(mg/L)	19.9	30.6		49.1	41.2		39.9	42.6	44.5	43.2	29.1	7.3	6.5		
SiO2(mg/L)	68.4	17.2		26	22.2		24.4		28.8	28.4	12.4				
SO4_F(mg/L)	1	7.2	1.3	9	6.7	17.4	14.9	16.4	13.2	13.4	38.2	10.5	10.3	7.2	1.4
Ag_T(µg/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10
Al_T(µg/L)	>LWR	4620		520	>LWR	>LWR	>LWR	>LWR	260	20		>LWR	700		
Al_T(mg/L)	20.5	N.A.	25.4	N.A.	1.8		1.82		N.A.	N.A.		93.5	N.A		
As_T(µg/L)	3.5	1	4.5	<0.5	1.5		1.5		<0.5	<0.5		23			
B_T(µg/L)	20	40		<20	20		20		20	20		80			
$Ba_T(\mu g/L)$	200	300	150	<50 <1	<50 <1		<50	<50	<50	<50		1800	50 <1		
Be_T(µg/L) Br_T(µg/L)	1610	56		36	62		54		50	48		11	34		
Cd_T(µg/L)	<0.2	<0.2		<0.2	<0.2		<0.2		<0.2	<0.2		100	<0.2		
$Cr_T(\mu g/L)$	35	<5		<5	<5		<5		5	<5		105			
$Cu_T(\mu g/L)$	20	<10	frances and the second se	<10	<10		<10		40	<10		170	<10		
Fe_T(µg/L)	9400	2360	>LWR	540	>LWR	>LWR	>LWR	>LWR	700	120		>LWR	800	20	970
Fe_T(mg/L)	N.A.	N.A.	23	N.A.	1.65		1.7	1.15	N.A.	N.A.		87.4	N.A	. N.A.	
Hg_T(µg/L)	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		
I_T(µg/L)	50	10		<10	<10		<10		<10	<10		80			and the second sec
Mn_T(µg/L)	50	460		20	70		35		70	10		3640	20		
Mo_T(µg/L)	<5	<5		<u>්</u> ර	<5		<5	5	<5	<u>්</u> ර		<5			
Ni_T(µg/L) Pb_T(µg/L)	12	2		<2 <1	4		4	2	<2	<2 <1		48			
Sb_T(µg/L)	0.8	<0.2		<0.2	0.6		0.2	1.2	1.6	<0.2		<0.2			
Se_T(µg/L)	2	<1		<1	0.0		<1		<1	<1		4	<1		and the second s
$Sn_T(\mu g/L)$	<10	<10		<10	<10		<10	<10	<10	<10		<10	<10		
U_T(µg/L)	10.2	5.93		0.75	2.11		1.61	0.26	0.84	0.91		16			
Zn_T(µg/L)	50	20	70	10	20	30	10	60	130	10		380	<10	<10	90
Sample type	airlift	airlift		airlift	airlift		airlift		airlift	airlift	airlift				
Rate(L/sec)	2.5	2.5		>15	15		15		>20	>20		1.5			
Depth(m)	24.6-25.8	59.9-64.9	46.6-48.6	101.5-115	94.5-103		190-193	197.7-198.8	209-210.3	230		68.1-73.8	98-103		
Details	cased to 15.7m	cased to 15.7m	cased to 5.6m	cased to 91.7m	cased to 46.6m	cased to 127m	cased to 127m	cased to 197.7m	cased to 197.7m	cased to 197.7m	cased to 49.6m	open hole	open hole	cased to 103m	slotted casing
Aquifer		Florina Fm. Sandstone 2	Florina Fm. Sandstone 1 C	Dolloo Dolostone	Florina Fm. Sandstone 2 and limestone2	Florina Fm. Sandstone 1 and limestone1	Florina Fm. Limestone 1	Oolloo Dolostone	Oolloo Dolostone	Oolloo Dolostone	Jinduckin Fm.	Florina Fm. Sandstone 2	Florina Fm. Sandstone 2	Florina Fm. Sandstone 2 and limestone1	Florina Fm. Sandstone 2


APPENDIX 1

Graphic logs



	Governr	nenṫ			RN370	J4、	3	Purpose: Groundwater investigation/stratigra Location: Easting 789175 Northing 8394342	aphic
	Bore	Constru		Gamma	Count 100 150		Strata	MGA zone 52 Florina Station Drilling method: Rotary using air , foam and mud	
10	SWL		 4 206mm steel 330mn 	and the second s			sand ,clayey,moderate reddish (10 r 4/6),fine grained, so	n brown with minor white mottling	- 10
	7.9 m		hole	· ~~~	Cretaceous	_15	Clay ,sandy, light brown	with minor white, yellow and	
20			251mr		0 25	_21 _25	silt	/6), plastic, sand medium grained h orange with minor white and yello	20
30			hole	South State			mottling(10 r 6/6),soft, sli clay	ghtly sandy, fine	- 30
40				Sound and the second se		_39	andclayey sand with a tra	e and dusky yellow(10 r 6/6, 5 y 6/4) ace of glauconite; from 36m yellowis of glauconite sandstone(5%)	
- 50	10L/s				5		sandstone	nedium light gray(n6) below 75m,	- 50
60				Maraman Maran Marana	Florina Formation (sandstone 2)		calcareous,very fine, sub sub-rounded, dark green limestone(calcarenite)(up	angular quartz, glauconitic(5%), grains,non-porous clay matrix; minc to 30%), light brown gray, medium glauconite and up to 5% quartz	
- 70				North May	ΕŰ		rocks oxidised above 72r		10
80						_79 84.5	shale	···· • • • · · · · · · · · · · · · · ·	Depth (Metres) 08 02
90	777			- MAN	Formation 2)	04.5 I I I		m to hard; minor sandstone(40%) uconitic, medium lightgray, some ale laminae	90
100	15L/s		156mm steel	< l	Florina		,yellowish gray with mino gray(5 y 7/2), fine to med	r medium light gray and light browni liumcrystalline, hard, some shale	
- 110					-104.5	104.0	laminae, pale green gray and; sandstone, gray, ca	, traces of shale, gray, sitistone, whi	ite 110
120			←200mm hole				sandstone		120
130	1.2L/s			M. M.	Florina Formation (sandstone 1)		,medium light gray(n6) ar (10 yr 5/6), fine ,glauconit some with fine pyrite, occ	nd minor and pale yellowish brown tic, micaceous and calcareous, asional shale laminae; minor shale,	130
140				- All	Florina F (sandsto		medium light gray(n6), m	inor limestone as above	140
150	3.8L/s			MM					150
160				A A	160.5	160.5	5		160
170	10L/s			and the second s	6				- 170
- 180					a Formation stone 1)		limestone		. 180
190				MM		 	glauconite; minor calcare micaceous; trace sandsto trace pyrite, fine grained a	nel to coarsly crystalline, hard, mino nite, very fine grained, quartz 20%, one, very fine grained, glauconitic; aggregates; below 177m sandstone	100
200				{			abundant shale laminae,r	nitic,yellowish gray(5 Y 7/2),with micaceous	200
210			149mm		Oolloo Dolostone (massive unit)		with depth, medium to ve crystalline rarer with dept	g to pale yellowish brown(10 yr 6/2) ry coarsely crystalline, very coarsely th,hard, abundant vughs with linings	
220	>20L/s		hole		05 <u>777</u> 77 77777		of calcite rhombs, minor g Stratigraphic boundaries i nd geologists log	glauconite at top interpreted from gamma log, drillers	^{log} 220
230				\$		4	* drill chips were collected	at 3m intervals	230
230									-230

APPENDIX 2 Drillers "statement of bores" sheets

r				NAL 51								
Name of	f Owner:		Ν	IT Govern	ment			Registr	ation No:	37	041	
Name o	of Bore:			Florina 1	/10							
Intende	ed use:			Monitori	ng			Index	Map No:			
Loca	ation:		Florina S	tation Por	tion No. 1	166	1	F	Permit No:	BCP	K201	
From	To (m)						N	lame of C	ontractor:	Water R	esources	
0	24.6		San	dy clays				Name	of Driller:	C Ga	llagher	
24.6	25.8		Fracture	d sandsto	ne			Date Con	nmenced:	20-May-10		
25.8	43.8		San	dy clays				Date C	ompleted:	27-M	lay-10	
43.8	61.8	Bands	of clay ar	nd friable	sandstone	Э		Dep	th Drilled:	: 162.9 m		
61.8	67.8		Green/gr	ey sandste	one			Completi	on Depth:	65.	9 m	
67.8	85.8	Gree	n/grey gla	uconitic s	andstone			METHO	DD OF DR	ILLING		
85.8	105.0	Cr	eamy colo	oured lime	stone		Rotary	Rev	/. Cir	Cable	Other	
105.0	162.9	Dark grey lime	estone and	d bands s	ilicified sa	Indstone	✓					
							HOL	E DIAME	TER	Drillin	g Fluid	
							From	To (m)	Dia (mm)	Ту	/pe	
							0	15.7	292	Air/F	oam	
							15.7	162.9	198	Air/F	oam	
				_								
		ARS OF CASIN							R SCREEN		38	
From	To (m)	Dia (ID)	Туре	From	To (m)	Dia (ID)	Ape			Туре		
0	15.7	206 mm	Steel	59.9	64.9	100 mm	4 n	nm		Slots		
0	65.9	100 mm	PVC									
Cooing Sug	nondod.	Yes 🗸	No 🗌					on of Bool	ker set at:	N	/A	
Casing Sus		ing between 206		tool and a	100 mm II			•	f Packer:		/A	
	Casing at			D Steel 0			/lethod of F	-			/A	
i leight oi	Casing a	JOVE GL.		D PVC 0.								
CEMENT		VEL PACKING			5 111							
From	To (m)	Type	Dept	h (m)	Yield	SWL	Duration		EC	ph	Bottle	
0	15.7	••	From	. ,	L/s		hr	Quality	EC	рп	No.	
0	15.7	Cement	24.6	To 25.8	2.5	m	Drilling	Fair	1044Us	7.15		
											1	
			61.0	67.0 86.0	4		Drilling	Fair	560 Us	9.86	۷	
			79.0	86.0	2.5		Drilling					
075.47			110.0	117.0 64.0	15		Drilling	Case	FOOL	6 50	2	
			59.9 Complet	64.9	2.5		1.5 Method:	Good	509Us	6.53	3 br	
Have bee			Completion Yield: 2.5 L/s					Air	Duration:	1.5	hr	
Left at:	Tannad	dice St Depot	Completion	SWL from (϶L:	17.2	m	Depth of lif	t:	38.0	m	

	DCATION SKETCH	OF BORE		LOCATION	I DESCRIPTIO	N OF BORE
Florina Homestead		E de com				6.19km
ALL ALL ALL ALL	A A A	CARA TA	12000-00	E	SE 🗌	
RN37041 RN37043	A Charles			W 🗌	NE 🗌	
111437043	State The	The second		N 🗌	SW	
all a second		2. 大大学		S 🗸	NW 🗌	
2				OF: Florina Station	Homestead.	
RN37042	N STATUS	N. Com				
	Pulled Left for Obs.	Abandoned	Equipped	Backfilled	Other	
GPS DATUM:	AGD66	WGS84	GDA94	Other	Easting	Northing
ADDITIONAL INFORMA					52L 0789153	8394312
PVC has cap fitted to be bung fitted. Drilled unde	ottom of casing and	faucet on top. 20	6 mm Steel cas	sing has cap we	lded with 50 mr	n socket and
Signature of Lic	ensed Driller:				Date:	
Llaw La sata di	000		AL USE ONLY	Lise d Distant	- 41	
How Located:	GPS		Survey	Hand Plotted	other	
ELEVATION OF BORE	AHD:			Hand Plotted	other	
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine	AHD: DPERTY:		Survey			Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine	AHD: DPERTY: ral Pastoral	TST	Survey (m) from: VCL	GL 🗌	TOC	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Lease No:	AHD: DPERTY: ral Pastoral Lot No:	TST	Survey	GL 🗌	TOC	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine	AHD: DPERTY: ral Pastoral	TST	Survey (m) from: VCL	GL 🗌	TOC	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Lease No:	AHD: DPERTY: ral Pastoral Lot No: Section No:	TST	Survey	GL 🗌	TOC	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Lease No: Portion No:	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic	TST	Survey (m) from: VCL Hundred of: Town of:	GL SPL	EL	
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Lease No: Portion No: Class of Bore: Tow	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture	GL	EL Pastoral	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Portion No: Class of Bore: Tow Use of Bore: Production Grid Reference: Easting:	AHD: DPERTY: ral Pastoral Lot No: Section No: rn Domestic ction Investigatior	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation	GL	EL Pastoral Roads Scale:	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Class of Bore: Tow Use of Bore: Production Grid Reference: Easting: Northing:	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic ction Investigation AMG Lattitude Longitude	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL Mineral Monitoring Map Name: Map Name:	EL Pastoral Roads Scale:	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Portion No: Class of Bore: Tow Use of Bore: Production Grid Reference: Easting: Northing:	AHD: DPERTY: ral Pastoral Lot No: Section No: rn Domestic ction Investigation AMG Lattitude	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL Mineral Monitoring Map Name:	EL Pastoral Roads Scale:	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Portion No: Class of Bore: Tow Use of Bore: Production Grid Reference: Easting: Northing:	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic ction Investigation AMG AMG Lattitude Longitude tream Basin Numbe	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL Mineral Monitoring Map Name: Map Name:	EL Pastoral Roads Scale:	Other None
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Class of Bore: Tow Use of Bore: Production Grid Reference: Easting: Northing: AWRC st	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic ction Investigation AMG Lattitude Longitude tream Basin Numbe	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologie	GL SPL Mineral Monitoring Map Name: Map Name:	EL Pastoral Roads Scale:	Other None
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Descension No: Portion No: Class of Bore: Tow Use of Bore: Product Grid Reference: Easting: Northing: Geophysical Log Ru Gamma SP	AHD: DPERTY: ral Pastoral Lot No: Section No: m Domestic ction Investigation AMG Lattitude Longitude tream Basin Numbe	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologie Date:	GL	EL Pastoral Roads Scale: Depth:	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Portion No: Class of Bore: Tow Use of Bore: Product Grid Reference: Easting: Northing: AWRC st Geophysical Log Ru	AHD: DPERTY: ral Pastoral Lot No: Section No: rn Domestic ction Investigation AMG Lattitude Longitude tream Basin Numbe In: Yes Caliper 	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologie Date: Density	GL	EL Pastoral Roads Scale: Depth:	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Descension No: Portion No: Class of Bore: Tow Use of Bore: Product Grid Reference: Easting: Northing: Geophysical Log Ru Gamma SP Test Pump carried out:	AHD: DPERTY: ral Pastoral Lot No: Section No: rn Domestic ction Investigation AMG Lattitude Longitude tream Basin Numbe In: Yes Caliper 	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologie Date: Density	GL	TOC EL Pastoral Roads Scale: Depth: Other Other	Other
ELEVATION OF BORE DESCRIPTION OF PRO Rural Mine Description No: Portion No: Class of Bore: Tow Use of Bore: Produc Grid Reference: Easting: Northing: Geophysical Log Ru Gamma SP Description Carried out: Date Registered:	AHD: DPERTY: ral Pastoral Lot No: Section No: rn Domestic ction Investigation AMG Lattitude Longitude tream Basin Numbe In: Yes Caliper 	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologie Date: Density	GL	TOC EL Pastoral Roads Scale: Depth: Other Other	Other

Name of	f Owner:		Ν	IT Goverr	nment			Registra	ation No:	370	042
Name o	of Bore:			Florina 2	2/10						
Intende	ed use:			Monitor	ing			Index	Map No:		
Loca	ation:		Florina S	Station Po	rtion No.1	166		Р	ermit No:	BCP	K201
From	To (m)						N	ame of C	ontractor:	Water Re	esources
0	19.1		Clays ar	nd claysto	ne			Name	of Driller:	C Gal	lagher
19.1	67.7	Fria	able Glaud	conitic sar	ndstone			Date Com	nmenced:	28-M	ay-10
67.7	88.8	Grey limeston	e with bar	nds of glau	uconitic sa	Indstone		Date Co	ompleted:	4-Ju	n-10
88.8	129.3		Pink Ooll	oo limesta	one			Dep	th Drilled:	129	.3 m
								Completio	on Depth:	129	.3 m
								METHO	D OF DR	ILLING	
							Rotary	Rev	. Cir	Cable	Other
							\checkmark				
							HOL		TER	Drilling	g Fluid
							From	To (m)	Dia (mm)	Ту	'pe
							0	5.6	292		
							5.6	91.8	198	Air/F	oam
							91.8	129.3	148	Air/F	oam
Р	ARTICUL	ARS OF CASIN	IG	P	ARTICUL	ARS OF F	PERFORA	TIONS OF			S
From	To (m)	Dia (ID)	Туре	From	To (m)	Dia (ID)	Apei	rture		Туре	
0	5.6	206 mm	Steel								
0	91.8	156 mm	Steel								
Casing Sus	pended:	Yes 🗌	No 🗹				То	op of Pack	ker set at:	N	/A
Method:						-		Length of	f Packer:	N	/A
Height of	Casing al	bove GL:	206 mm	D Steel 0	.4 m	Ν	/lethod of F	Packer Co	onnection:	N	/A
			156 mm l	D Steel 0	.6 m						
CEMENT	TING/GRA	VEL PACKING				WATEF	RBEARING	G BEDS			
From	To (m)	Туре	Dept	h (m)	Yield	SWL	Duration	Quality	EC	ph	Bottle
0	5.6	Cement	From	То	L/s	m	hr				No.
80	91.8	Cement	45	48.6	5	9.2	Drilling	Good	203Us	4.9	1
			91.0	96.0	1		Drilling	Good	765Us	5.5	2
			101.5	115.0	15+		Drilling	Good	786Us	7.7	3
							Ŭ				
STRAT	FA and WAT	ER SAMPLES									
Have bee		Will be	Complet	ion Yield:	20	L/s	Method:	Air	Duration:	0.5	hr
Left at:		dice St Depot	Completion			7.9	m	Depth of lift		126.0	m

LOCA	TION SKETCH (OF BORE		LOCATION	DESCRIPTIO	N OF BORE
Florina Homestead		and the second	NO EN			16.04km
The Marine Part of the State	The second	C PASS	1	E	SE	
RN37041 RN37043	C. T. C. C. C. C.			W 🗌	NE 🗌	
111137043	State The	The second		N 🗌	SW 🗌	
A State of the second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S 🗸	NW 🗌	
	The second	2000000		OF:		
RN37042				Florina Statior	n Homestead.	
FINAL CONSTRUCTION S						
Capped Casing Pulle	ed Left for Obs.	Abandoned	Equipped	Backfilled	Other	
	\checkmark					
GPS DATUM:	AGD66	WGS84	GDA94	Other	Easting	Northing
ADDITIONAL INFORMATIC					52L 0793412	8384965
Left open hole from 91.8 to Cover and Peter Rees.	129.3 metres . 15	56 mm ID Steel	casing left with	lockable cap. C)rilled under sup	pervision of W
Signature of Licens	ed Driller:				Date:	
			AL USE ONLY	Lloyd Dlotted	othor	
How Located:	GPS	FOR OFFICI TST	AL USE ONLY Survey	Hand Plotted	other	
How Located: ELEVATION OF BORE AHI	GPS			Hand Plotted	other	
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE	GPS D: RTY:		Survey (m) from:	GL 🗌	TOC	
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral	GPS D: RTY: Pastoral		Survey			Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral	GPS D: RTY: Pastoral		Survey (m) from: VCL	GL 🗌	TOC	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No:	GPS D: RTY: Pastoral Lot No:		Survey (m) from: VCL Hundred of:	GL 🗌	TOC	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral	GPS D: RTY: Pastoral		Survey (m) from: VCL	GL 🗌	TOC	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No:	GPS D: RTY: Pastoral Lot No:		Survey (m) from: VCL Hundred of:	GL 🗌	TOC	Other Other Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No:	GPS D: RTY: Pastoral Lot No: Section No: Domestic	TST	Survey (m) from: VCL Hundred of: Town of:	GL SPL	EL	
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town	GPS D: RTY: Pastoral Lot No: Section No: Domestic	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture	GL SPL Mineral Monitoring	EL Pastoral	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production	GPS D: RTY: Pastoral Lot No: Section No: Domestic Investigation	TST	Survey CMD from: VCL Hundred of: Town of: Agriculture Observation	GL SPL Mineral Monitoring	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference:	GPS	TST	Survey CMD from: VCL Hundred of: Town of: Agriculture Observation	GL SPL Mineral Monitoring	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Productior Grid Reference: Easting: Northing:	GPS D: RTY: Pastoral Lot No: Section No: Domestic Investigation AMG Lattitude	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL Mineral Monitoring Map Name	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea	GPS	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi	GL GL SPL Mineral Monitoring Map Name Map Number	EL Pastoral Roads Scale	Other None
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run:	GPS	TST	Survey C Sur	GL GL SPL Mineral Monitoring Map Name Map Number	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run:	GPS	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi	GL GL SPL Mineral Monitoring Map Name Map Name Map Number cal Units Name	EL Pastoral Roads Scale	Other None
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run:	GPS	TST	Survey C Sur	GL GL SPL Mineral Monitoring Map Name Map Name Map Number cal Units Name	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run: Gamma SP	GPS	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi Date: Density	GL GL SPL Mineral Monitoring Map Name Map Name Map Number cal Units Name	EL Pastoral Roads Scale	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run: Gamma SP Test Pump carried out:	GPS	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi Date: Density	GL	EL Pastoral Roads Scale Depth: Other	Other
How Located: ELEVATION OF BORE AHI DESCRIPTION OF PROPE Rural Mineral Lease No: Portion No: Class of Bore: Town Use of Bore: Production Grid Reference: Easting: Northing: AWRC strea Geophysical Log Run: Gamma SP Test Pump carried out: Date Registered:	GPS	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi Date: Density	GL	EL Pastoral Roads Scale Depth: Other	Other

					AIEME		JUKE			07	
	f Owner:		Ν	IT Govern				Registra	ation No:	37	043
Name o				Florina 3							
	ed use:			Monitor	•				Map No:		
Loca			Florina S	Station Po	rtion No.1	166			Permit No:		K201
From	To (m)						N	ame of C	ontractor:	Water R	esources
0	20.0			dy clays					of Driller:		lagher
20.0	36.9				d clayston			Date Con	nmenced:	5-Jun-10	
36.9	67.5	Glauconitio	c Sandsto	ne and cr	eam limes	stone		Date Co	ompleted:	17-J	un-10
67.5	88.0	Glauconit	ic sandsto	one with b	ands of sh	nale		Dep	th Drilled:	230	.0 m
88.0	106.5		Brown/gr	ey Limest	one			Completi	on Depth:	230	.0 m
106.5	159.8	Glauconit	ic sandsto	one with b	ands of sł	nale		METHO	DD OF DR	ILLING	
159.8	190.0		Brown/gr	ey Limest	one		Rotary	Rev	. Cir	Cable	Other
190.0	194.7		Grey/pir	nk limesto	ne]		
194.7	230.0		Pink Ooll	oo limesto	one		HOL	E DIAME	TER	Drillin	g Fluid
							From	To (m)	Dia (mm)	Ту	/pe
							0	5.6	330	A	vir
							5.6	46.5	251	Polym	er Mud
							46.5	196.3	200	Air/F	oam
							196.3	230.0	149	Air/F	oam
P	ARTICUL	ARS OF CASIN	G	P	ARTICUL	ARS OF F	PERFORA	TIONS OF		N STRING	S
From	To (m)	Dia (ID)	Туре	From	To (m)	Dia (ID)	Ареі	rture		Туре	
0	5.6	258 mm	Steel								
0	196.3	156 mm	Steel								
Casing Sus	pended:	Yes 🗌	No 🗹				То	op of Pacl	ker set at:	N	/A
Method:						1		Length o	f Packer:	N	/A
Height of	Casing al	pove GL:	258 mm	D Steel 0	.3 m	N	lethod of F	Packer Co	onnection:	N	/A
			156 mm	D Steel 0	.8 m						
CEMENT	TING/GRA	VEL PACKING				WATEF	R BEARING	G BEDS			
From	To (m)	Туре	Dept	h (m)	Yield	SWL	Duration	Quality	EC	ph	Bottle
0	5.6	Cement	From	То	L/s	m	hr	1			No.
188	196.3	Cement	46.5	55.5	10		Drilling	Good	384Us	5.69	1
			94.5	103.0	15		Drilling	Good	638Us	7.15	2
			150.0	174.0	15		Drilling	Good	640Us	7.5	2.1
			190.0	193.0	15		Drilling	Good	620Us	8	3
STRAT	TA and WAT	ER SAMPLES	210.0	230.0	20+	16.6	0.5	Good	658Us	5.4	6
Have bee	en 🗸						Method:	Air	Duration:	0.5	hr
Left at:	Tanna	dice St Depot	Completion	SWL from (GL:	16.6	16.6 m Depth of lift: 228.0				m

	LOCAT	ION SKETCH C	OF BORE		LOCATION	DESCRIPTIO	N OF BORE
Florina Homest	the second se		a de la company			.16	km
Contraction of the		A AD A	CARLES TO		E	SE	
RN37041 RN37045	all and	THE PART			W 🗌	NE 🗌	
1(1457/045	行政的原	State The		A CAL	N 🗌	SW 🗌	
	and the		Contraction of the		S 🗸	NW 🗌	
			A REAL PROVIDENCE		OF:		
- Arctin		and the second	a start from		Florina Station	Homestead.	
			THER.				
SALE COM	LE C	140 15		and the second			
	35.51		Carl P. C				
RN3704	2	Star P	Star -				
1 1 1 H 1 T	A Province	4					
FINAL CONSTRU							
Capped C	asing Pulled	Left for Obs.	Abandoned	Equipped	Backfilled	Other	
GPS DA	IUM:	AGD66	WGS84	GDA94	Other	Easting	Northing
ADDITIONAL INF						52L 0789175	8394342
Left open hole fro					kable can Drill	nd under super	vision of W
Cover.	JII 190.3 III I	0 230 111 . 130 1	IIII ID Steel cas		Rable Cap. Dilli	eu under superv	
Cover.							
Signature	e of Licensed	d Driller:				Date:	
	- 4 - J.	0.00		AL USE ONLY	Hand Plotted	- 41	
How Loc	ated:	GPS	TST	Survey		other	
ELEVATION OF				(m) from:	GL 🗌	тос	
DESCRIPTION C					01		
Rural	Mineral	Pastoral	Reserve	VCL	SPL	EL	Other
Lease No:		Lot No:		Hundred of:			
Portion No:		Section No:		Town of:			
Class of Bore:	Town	Domestic	Investigation	Agriculture	Mineral	Pastoral	Other
Use of Bore:	Production	Investigation	Irrigation	Observation	Monitoring	Roads	None
Grid Reference:		AMG	Clark	Zone		Scale:	
Easting: Northing:		Lattitude			Map Name: Map Number:		
	NPC stroom	Longitude Basin Number:		Major Goologi	cal Units Name		
A	WRC Silean	Dasin Number.		Major Geologi	cal Units Name	•	
Geophysical	Log Run:	Yes 🗌	No 🗌	Date:		Depth:	m
Gamma	SP	Caliper	Point Res.	Density	Camera	Other	()
							、 ,
Test Pump corrig	d out:	Yes 🗌	No 🗌				
Test Pump carrie Date Registered:			Bore Plotted o	in the man?	Yes 🗌	No 🗌	
Officer:							
Remarks:			Signature:				
itternarta.							

					AIEME		DURE				<u> </u>	
	f Owner:		Ν	IT Goverr				Registr	ation No:	37	044	
	of Bore:			Florina 4								
Intend	ed use:			Monitor	0				Map No:			
Loca	ation:		Florina S	station Po	rtion No.1	166		F	Permit No:	BCF	PK201	
From	To (m)						N	lame of C	ontractor:	Water R	esources	
0	1.5		Top soil	and later	ite			Name	of Driller:	C Ga	llagher	
1.5	4.2	М	ulti colour	ed layere	d clay			Date Cor	nmenced:	6-Jul-10		
4.2	5.4	Loo	se course	sand and	d gravel			Date C	ompleted:			
5.4	6.8	White ar	nd brown	weathered	d sandsto	ne		Dep	th Drilled:	: 215.16 m		
6.8	13.5	Wea	athered sa	indstone a	and clay			Completi	on Depth:	215.16 m		
13.5	15		Limesto	ne and cla	ay			METHO	DD OF DR	ILLING		
15	25.56		Grey	limestone	1		Rotary	Rev	/. Cir	Cable	Other	
25.56	60	-	Tan and g	rey limes	tone		\checkmark					
60	79	P	ink and bi	own lime	stone		HOL	E DIAME	TER	Drillin	g Fluid	
79	97	Pir	nk tan and	l grey lime	estone		From	To (m)	Dia (mm)	Т	уре	
97	131		Brown	limestone	е		0	5.6	251	ŀ	Air	
131	215.16	Grey gre	en and br	own band	led limesto	one	5.6	49.56	200	Polym	ner Mud	
							49.56	215.16	150	Air/I	Foam	
P	PARTICUL	ARS OF CASIN	G	P.	ARTICUL	ARS OF F	PERFORA	TIONS O		STRING	GS	
From	To (m)	Dia (ID)	Туре	From	To (m)	Dia (ID)	Apei	rture	1	Туре		
0	5.6	203 mm	Steel	49.56	215.16	150 mm	open	hole				
0	49.56	156 mm	Steel									
Casing Sus	spended:	Yes 🗌	No 🗹				То	op of Pac	ker set at:	Ν	I/A	
Method:						1		Length o	f Packer:	Ν	I/A	
Height of	f Casing al	bove GL:	0.55 m ·	- 156 mm	ID steel	N	lethod of F	Packer Co	onnection:	Ν	I/A	
CEMEN	TING/GRA	VEL PACKING				WATEF	R BEARING	G BEDS				
From	To (m)	Туре	Dept	h (m)	Yield	SWL	Duration	Quality	EC	ph	Bottle	
0	5.6	Cement	From	То	L/s	m	hr				No.	
			109	115	0.2				570	8.2		
			162	166	0.5				700	8.5		
			172	181	1				620	8.2		
			205	211	2				635	8.2		
	TA and WAT	ER SAMPLES										
STRA	TA anu WAT											
STRA Have bee		Will be	Complet	on Yield:	2	L/s	Method:	Air	Duration:	10	mins	

LOCATION SKETCH OF BORE					LOCATION DESCRIPTION OF BORE		
The second						12.2	
- BR 2 4	TIPR		See State		E	SE	
A A A			STAR PAR		W	NE 🗌	
C. C.	Y M		1 27044		N 🗹	sw 🗌	
	Summer .	R	N 37044		s 🗆	NW	
	1000 - T	21 1			OF:		
	e La	T. A.			Florina Statior	n Gate	
. 5	A CONTRACTOR		ALC: NO				
The second		KALL NY		The state of the second			
		Sin Si	Wat Ha a	and the second			
ANP STREET	Mar and	A CARE AND	Tex 20	A CONTRACTOR			
FINAL CONST							
Capped ✓	Casing Pulled	Left for Obs.	Abandoned	Equipped	Backfilled	Other	
GPS D/	ATUM:	AGD66	WGS84	GDA94	Other	Easting	Northing
			✓			52L 812352	8402770
		NAND INTERE					
					sing left with loo	ckable cap. Drille	ed under
supervision of F	Peter Rees. No	ote: total depth	211.16 m (back	filled).			
Signatu	are of Licensed	d Driller:				Date:	
						Dato.	
				AL USE ONLY			
How Lo		GPS	FOR OFFICI	AL USE ONLY Survey	Hand Plotted		
	ocated:	GPS		Survey		other	
ELEVATION O	ocated: F BORE AHD	GPS			Hand Plotted		
ELEVATION O DESCRIPTION	ocated: F BORE AHD OF PROPER	GPS		Survey (m) from:	GL 🗌	other	
ELEVATION O	F BORE AHD OF PROPER Mineral	GPS C TY: Pastoral	TST	Survey	GL SPL	other	Other
ELEVATION O DESCRIPTION Rural	ocated: F BORE AHD OF PROPER	GPS		Survey (m) from: VCL	GL 🗌	other	Other
ELEVATION O DESCRIPTION Rural Lease No:	F BORE AHD OF PROPER Mineral	GPS	TST	Survey (m) from: VCL Hundred of:	GL SPL	other	
ELEVATION O DESCRIPTION Rural	F BORE AHD OF PROPER Mineral	GPS	TST	Survey (m) from: VCL	GL SPL	other	
ELEVATION O DESCRIPTION Rural Lease No:	F BORE AHD OF PROPER Mineral	GPS	TST	Survey (m) from: VCL Hundred of:	GL SPL Mineral	other	Other
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore:	Docated: F BORE AHD OF PROPER Mineral Town Town	GPS Pastoral Lot No: Section No: Domestic	TST Reserve	Survey (m) from: VCL Hundred of: Town of: Agriculture	GL SPL Mineral	other	Other
ELEVATION O DESCRIPTION Rural Lease No: Portion No:	ocated: F BORE AHD OF PROPER Mineral	GPS	TST	Survey (m) from: VCL Hundred of: Town of:	GL SPL Mineral	other	Other
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore:	Town	GPS Pastoral Lot No: Section No: Domestic	TST Reserve	Survey (m) from: VCL Hundred of: Town of: Agriculture	GL SPL SPL Mineral Monitoring	other	Other
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore:	Town	GPS CTY: Pastoral Lot No: Section No: Domestic Investigation	TST Reserve	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation	GL SPL SPL Mineral Monitoring	other	Other
ELEVATION OD DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Grid Reference	Town	GPS TY: Pastoral Lot No: Section No: Domestic Investigation AMG	TST	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation	GL SPL SPL Mineral Monitoring	other	Other
ELEVATION OD DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Grid Reference Easting: Northing:	Town Production	GPS	TST Reserve Investigation Irrigation Clark	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL SPL Mineral Monitoring Map Name	other	Other
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing:	Cocated: F BORE AHD OF PROPER Mineral Town Production : AWRC stream	GPS	TST Reserve Investigation Irrigation Clark	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone:	GL SPL Mineral Monitoring Map Name Map Number cal Units Name	other	Other
ELEVATION OD DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Grid Reference Easting: Northing:	Cocated: F BORE AHD OF PROPER Mineral Town Production : AWRC stream	GPS Pastoral Pastoral Lot No: Section No: Domestic Investigation AMG Lattitude: Longitude: Basin Number: Yes	TST Reserve	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi Date:	GL C SPL Mineral Monitoring Map Name Map Number	other	Cther None
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing:	AWRC stream	GPS	TST Reserve Investigation Irrigation Clark	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi	GL	other	Other
ELEVATION OF DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing: Geophysica Gamma Samma	Town Town Production SP AWRC stream ALLog Run: SP	GPS	TST Reserve Investigation Irrigation Clark No Point Res.	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Major Geologi Date:	GL	other	Cther None
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing: Geophysica Gamma Samma	AWRC stream	GPS Pastoral Lot No: Section No: Domestic Investigation AMG Lattitude: Longitude: Basin Number: Yes Caliper	TST Reserve □ Investigation □ Irrigation □ Clark □ No □ Point Res. □ No ☑	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Date: Density	GL	other	Cther None
ELEVATION OF DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing: Geophysica Gamma Samma	AWRC stream	GPS	TST Reserve Investigation Irrigation Clark Clark No Point Res. No Sore Plotted of	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Date: Density	GL	other	Cther None
ELEVATION O DESCRIPTION Rural Lease No: Portion No: Class of Bore: Use of Bore: Use of Bore: Grid Reference Easting: Northing: Geophysica Gamma Samma Test Pump carr Date Registered	AWRC stream	GPS	TST Reserve □ Investigation □ Irrigation □ Clark □ No □ Point Res. □ No ☑	Survey (m) from: VCL Hundred of: Town of: Agriculture Observation Zone: Date: Density	GL	other	Cther None

From To Rock Type Description

0 0.5 Soil, sandy, light yellow brown, loose, ironstone nodules to 1cm

0.5 12 Sand, clayey, orange brown, soft, fine to medium grained, sub-rounded grains

1218Sandstone, orange brown, firm, medium to fine grained, sub-rounded1830Clay, sandy, soft, light orange brown with minor pink sand brownmottles, fine to medium grained

30 51 Clay, light olive brown, soft to firm, slightly sandy(fine), 24 to 27m abundant fine sand, trace glauconite below 45m

51 54 Clay, pale green, soft

54 57 Sandstone, clayey and clean sections, soft, light green brown, fine grained, trace glauconite; and shale, light green, hard to firm

57 63 Shale, light green, soft, at 60m trace reaction to HCl, trace glauconitic sandstone as above

63 69 Sandstone, light green, glauconitic, fine grained, hard, minor green shale laminae

69 72 Shale, pale green, soft to firmand glauconitic sandstone, fine grained, very calcareous, almost a calcarenite

7281Sandstone, bluish gray, glauconitic, hard, fine grained, , trace react toHCl at 78 - 81m; minor shale, bluish gray, firm to hard

81 87 Shale, bluish gray, moderately hard; trace glauconitic sandstone, fine grained

87 105 Limestone, gray, medium to finely crystalline, hard, weak react to HCl;and shale, blue gray and pale green, less shale with depth; trace sandstone

105 108 Limestone, gray, fine to medium crystalline, trace glauconite

108 129 Limestone, dark gray and gray, fine, hard, trace glauconite, minor shale as per 87 to 105m, glauconitic sandstone abundant at 117-120m and 123-128m 129 163 Sandstone, dark gray, glauconitic, fine grained, minor medium, hard, minor primary porosity; minor shale, pale green, firm; minor limestone, dark gray and light gray

RN37042

From To Rock Type Description

0 9 Clay, silty, greyish orange (10YR7/4), soft, slightly micaceous; 0 - 3m, minor ironstone(matrix supported, ferruginised sandstone) nodules to 5mm

9 12 Clay, silty, greyish orange (10YR7/4), soft, slightly micaceous(highly weathered shale); trace sandstone laminations, very fine grained, glauconitic(5%) 12 18 Shale, pale olive(10Y6/2), firm; minor sandstone(very weathered) laminations, greyish orange, very fine to fine grained, slightly micaceous, glauconitic(5%)

18 42 Sandstone, greyish orange(10YR7/4), firm, fine to medium grained, quartz subangular clear with some grains lightly iron-stained, glauconitic(5%) sub-rounded to rounded grains, trace mica, fine grained sandstone tends to have clayey matrix but medium grained sandstone is porous, calcareous @ 39-42m and 45-48m; minor shale laminae, firm, pale olive(10Y6/2)"

42 45 Shale, pale olive(10Y6/2), firm, some layers micaceous; minor sandstone ,greyish orange(10YR7/4), very fine to fine grained, slightly micaceous, glauconitic(5%)

RN37042 ctd.

From To Rock Type Description

45 54 Sandstone, greyish orange(10YR7/4), firm, fine to medium grained, quartz subangular clear with some grains lightly iron-stained, glauconitic(2%) subrounded to rounded grains, trace mica, porous in places; minor shale (up to 30%), firm, pale olive(10Y6/2), some shale laminae in sandstone"

54 63 Sandstone, greyish orange(10YR7/4), firm, fine to medium grained, quartz subangular clear with some grains lightly iron-stained, glauconitic(2%) sub-rounded to rounded grains, trace mica, porous in places; minor shale (up to 10%), firm, pale olive(10Y6/2), some shale laminae in sandstone"

63 66 Sandstone, greyish orange(10YR7/4), firm, fine to medium grained, quartz subangular clear with some grains lightly iron-stained, glauconitic(2%) subrounded to rounded grains, trace mica, porous in places; minor shale (up to 30%), firm, pale olive(10Y6/2), some shale laminae in sandstone"

66 69 Limestone, yellowish gray(5Y7/2), finely crystalline, trace manganese dendrites on joints, hard; minor sandstone as above

69 81 Limestone, medium gray(N5) and light olive gray(5Y6/1), fine to medium crystalline(minor coarse), hard, rare trace of glauconite; minor shale as above and trace of highly micaceous shale(interbedded with limestone); minor sandstone as above

81 87 Limestone, medium gray(N5), fine to medium crystalline, hard, some with 2% fine glauconite; shale, medium gray(N5), firm; minor sandstone, fine, glauconitic

87 90 Limestone, medium gray(N5), fine to medium crystalline, hard, some with 2% fine glauconite; minor sandstone, fine grained, glauconitic(5%), medium gray(N5); 50% of chips are the same lithology but pale red(5R6/2 and 10R6/2), in some sandstone the carbonate grains are moderate red(5R5/4), some chips are both gray and red with irregular boundaries between the colours"

90 93 Limestone, as above and limestone, coarsely crystalline, moderate red(5R4/6)(Oolloo Dolostone)

93 105 Limestone, coarse to very coarsely crystalline, pale red(10R6/2) and moderate red(5R4/6), hard, some euhedral calcite rhombs(cavity fill), rare sandstone, glauconitic, pale red, 102-105m white finely granular calcite in optical continuity(cavity fill)

105 114 Limestone, as above and shale, brownish gray(5YR4/1) and light olive gray(5Y6/1), firm, slightly calcareous

114 129 Limestone, pale red(10R6/2) and minor moderate red(5R4/6), coarsely crystalline, hard; trace shale as above

From To Rock Type Description

0 1 Sand, pale yellowish brown (10 YR 6/2), unconsolidated, fine grained, minor medium, sub-rounded grains

1 3 Sand, light brown (5 YR 6/4), unconsolidated, fine grained, minor medium, ironstone nodules to 5mm (medium sub-rounded to rounded sand in ferruginious matrix, matrix supported)

3 6 Sand, slightly clayey, unconsolidated, fine to medium grained, light brown with white specks (5 YR 6/4), minor white kaolinitic clay

6 15 Sand, clayey,moderate reddish brown with minor white mottling (10 R 4/6), soft

15 18 Clay, sandy, light brown with minor white, yellow and gray mottling(5 YR 5/6), plastic, sand medium grained

18 21 Clay, sandy, light brown with minor white, brown, yellow and gray mottling(5 YR 5/6), plastic, sand medium grained

21 24 Silt, clayey, moderate reddish orange with minor white and yellow mottling(10 R 6/6), soft, slightly sandy, fine

24 27 Silt, clayey, moderate reddish orange(10 R 6/6),soft, slightly sandy, fine

27 30 Clay, moderate reddish orange and dusky yellow(10 R 6/6, 5 Y 6/4); and clayey sand with a trace of glauconite

30 33 no sample

33 36 Clay, moderate reddish orange and dusky yellow(10 R 6/6, 5 Y 6/4), soft, with a trace of glauconite sandstone(5%), very fine, firm to hard, calcareous

36 39 Clay, yellowish gray(5 Y 7/2),soft, glauconitic sandstone, calcareous, very fine grained, quartz with 5% glauconite

39 48 Sandstone, yellowish gray(5 Y 7/2),calcareous, very fine, sub-angular quartz, glauconitic(5%), sub-rounded, dark green grains, non-porous clay matrix; minor limestone(calcarenite)(10%), light brown gray, medium crystalline with very fine glauconite and up to 5% quartz

48 60 Sandstone, yellowish gray(5 Y 7/2), calcareous, very fine, sub-angular quartz, glauconitic(5%), sub-rounded, dark green grains, non-porous clay matrix, rare sandstone chips with shaley laminae; minor siltstone(30%), light gray, shaly, micaceous

60 63 Sandstone, as above and up to 30% limestone as per 39-48m

63 66 Sandstone, as per 48-60m, one chip with a sandstone limestone contact

66 75 Sandstone, as per 39-48m but limestone up to 20%

75 78 Sandstone, as per 48-60m, medium light gray(N6)

7881Sandstone, as per 39-48m, medium light gray(N6) and minor shale,gray, firm

81 87 Shale, medium light gray(N6), firm to hard; minor

sandstone(40%),calcareous, very fine, glauconitic, medium light gray, some sandstone chips have shale laminae

87 90 Limestone, yellowish gray with minor medium light gray and light brownish gray(5 Y 7/2), fine to medium crystalline, hard, some shale laminae, pale green gray

90102Limestone, as above and trace gray shale and siltstone white102105Limestone, as per 87-90m and trace sandstone, very fine, gray,glauconitic, calcareous

RN37043 ctd.

From To Rock Type Description

105 114 Sandstone, medium light gray(N6) fine ,glauconitic, micaceous and calcareous, some with fine pyrite and limestone as per 87-90m, some slightly glauconitic, some shale laminae, pronounced iron staining along bedding planes, and shale, medium light gray(N6)

114 117 Limestone, medium light gray(N6),hard, finely crystalline,minor medium crystalline limestone, some with medium grained glauconite; and minor shale, medium light gray(N6), firm to hard; and minor sandstone, very fine grained, calcareous, hard to firm

117 123 Sandstone, medium light gray(N6) and pale yellowish brown(10 YR 5/6), fine to medium grained, quartz, the medium grained sandstones have some intergranular porosity, glauconitic(to 30%), calcareous and minor limestone, medium light gray(N6), finely crystalline, glauconitic

123 126 Sandstone, medium light gray(N6) and pale yellowish brown(10 YR 5/6), fine to medium grained quartz, the medium grained sandstones have some intergranular porosity, glauconitic(to 30%), calcareous; and minor shale medium light gray(N6), firm,

126 150 Sandstone, medium light gray(N6), fine to medium grained quartz, quartz mostly clear 10% lightly iron stained, sub-angular, glauconitic(to 10%), glauconite sub-rounded to rounded, calcareous, firm, some intergranular porosity present in the medium grained sections;

150 156 Sandstone, sandstone as above; and limestone, medium to coarsely crystalline, medium light gray(N6),glauconitic(5%), sub-rounded, medium grained, some limestone may be veins cutting the sandstone but most probably thinly interbedded with sandstone.

156 162 Sandstone, yellowish gray with minor medium gray(5 Y 7/2), fine grained, quartz mostly clear 10% lightly iron stained, sub-angular, glauconite(5%), sub-rounded, some intergranular porosity; trace limestone, medium crystalline, glauconitic(2%)

162 165 Limestone, yellowish gray(5 Y 7/2),finely crystalline, hard; minor calcarenite, very fine grained, quartz 20%, micaceous; trace sandstone, very fine grained, glauconitic; trace pyrite, fine grained aggregates

165 174 Limestone, yellowish gray(5 Y 7/2),medium to coarsely crystalline, minor ironstaining on fractures hard, rare chips have 1% fine glauconite grains; minor calcarenite, very fine grained, quartz 20%, micaceous; trace sandstone, very fine grained, glauconitic

174 177 Limestone, medium light gray(N6) and minor(40%) yellowish gray(5 Y 7/2),medium to coarsely crystalline, minor fine, minor ironstaining on fractures, hard, rare chips have 1% fine glauconite grains; minor calcarenite, very fine grained, quartz 20%, micaceous; trace sanstone

177 180 Limestone, yellowish gray(5 Y 7/2),medium to coarsely crystalline, minor fine, hard, 10% of limestone has up to 5% fine glauconite grains,rare pyrite; and sandstone(30%), very fine grained, glauconitic, yellowish gray(5 Y 7/2),with abundant shale laminae,micaceous

180 189 Limestone, medium light gray(N6),medium to coarsely crystalline, minor fine, hard, 50% of chips have up to 5% fine glauconite grains; and sandstone(10%), very fine grained, glauconitic, medium light gray(N6),with minor shale laminae,micaceous;183-186m ironstaining on fractures

RN37043 ctd.

From To Rock Type Description

189 192 Limestone, as above; 50% is pale red(5 R 6/2), a few chips contain both gray and red areas with irregular boundaries, in one instance the red colour follows a fracture in the gray fine grained glauconitic limestone

192 195 Limestone, calcarenite, grayish red(5 R 4/2),up to 20% glauconite, up to 10% quartz, hard, fine grained; and limestone, very coarsely crystalline, grayish red and minor pale red(5 R 4/2 and 10 R 6/2), abundant vughs with linings of calcite rhombs

195 210 Limestone, grayish red and minor pale red(5 R 4/2 and 10 R 6/2), very coarsely crystalline, hard; at 198-201m siltstone, white, chalky, calcerous, firm

210 231 Limestone, pale red(10 R 6/2) tending to pale yellowish brown(10 YR 6/2) with depth, medium to coarsely crystalline, hard; minor limestone, grayish red(5 R 4/2), very coarsely crystalline as above becoming rarer with depth

RN37044

From To Rock Type Description

0 3 Sandstone, clayey, firm, pale yellowish brown(10YR7/2),grayish orange(10YR7/4) and moderate brown(5YR4/4)

3 6 Clay, firm, grayish orange(10YR7/4) and very pale orange(10YR8/2), minor sandstone, white, fine, slightly clayey

6 12 Sandstone, grayish orange(10YR7.5/3), unconsolidated to hard, fine

12 18 Clay, sandy, soft,dark yellowish orange(10YR6.5/5), fine at top coarse at base

18 21 Limestone, dark yellowish orange(10YR6/6) & pale olive(10Y6/2), finely crystalline, hard, react to HCl

21 36 Limestone, yellowish gray(5Y6/2), hard, finely crystalline, react to HCl

36 60 Limestone, yellowish gray(5Y6/2) & pale red(10R6/2), hard, finely crystalline, react to HCl

60 99 Limestone, pale red(10R6/2), hard, finely crystalline, react to HCl, some with up to 10% fine quartz(calcarenite)

99 117 Limestone, pale red(10R6/2 & 5R6/2)) & minor pale olive(10Y6/2), hard, finely crystalline, react to HCl, some with up to 10% fine quartz(calcarenite)

117 126 Limestone, pale red(5R6/2), hard, finely crystalline & silty limestone, fine, light brownish gray(5YR6/1), some with up to 10% fine quartz(calcarenite)

126 147 Siltstone, grayish red(5R4/2), hard, calcerous and slightly micaceous and limestone, medium gray(N5), fine, hard

147 162 Limestone, silty, medium light gray(N6), calcerous and slightly micaceous, hard

162 177 Siltstone, grayish red(5R4/2), hard, calcerous, micaceous, some sandy and limestone, medium light gray(N6), hard, fine and sandstone, grayish red and white, calcareous, fine

177 201 Siltstone, grayish red(5R4/2), hard, calcerous, micaceous, some sandy and limestone, medium light gray(N5), hard, fine(calcarenite), trace sandstone, calcareous

201 215.1 Siltstone, grayish red(5R4/2), hard, calcerous, micaceous and limestone, medium gray(N5), hard, fine