

Groundwater section
Report No $57 / 85 \mathrm{D}$

BORE COMPLETION REPORT
BORES 23449 AND 23450
EAST ALLIGATOR RANGER STATION
CONTENTS

1. INTRODUCTION
2. HYDROGEOLOGY
3. RESUITS
4. ATTACHMENTS
TEST REPORT - BORE RN 23449
TEST REPORT - BORE RN 23450
TEST REPORT - BORE RN 20636
TEST REPORT - BORE RN 20637
WATER SAMPIE ANALYSIS BORE RN 23449
WATER SAMPLE ANALYSIS BORE RN 23450
DISTRIBUTION
Copies

Copies
Australian National Parks and Wildiife Service CanberraDepartment of Housing and ConstructionAdelaideDepartment of Housing and ConstructionDarwin

Chief Ranger
Kakadu National Park Jabiru

Water Resources Division Library
Water Resources Division Bore Data File1

This report provides details of construction and pumping recommendations for bores drilled on Kakadu National Park.

The Kakadu National park is located about 120 km east of Darwin. The bores were drilled at AMG 276400862500 (East Alligator 1:100 000 map sheet 5473).

Bore 23449 and 23450 were successfully drilled.
The work was carried out in July 1985 on behalf of the Australian National Parks and wildife Service and involved preliminary investigation, construction and testing of production bores.

Bores 20636 and 20637 were also pump tested at the request of the client.

HYDROGEOLOGY

The area is located in the north-east part of the pine Creek Geosynciine. It is underlain by the Kambolgie Formation which is mainly composed of quartz sandstone. The bores were located on the weathered and fractured zone of the Bulman fault running north-west to south-east.

Bores 23449 and 23450 encountered an aquifer between 14 m and 24 m located in fractured quartz sandstone.

RESULMS

Bores 23449 and 23450 were drilled and constructed with PVC casing and stainless steel screens.

A twenty four hour constant discharge test and a recovery test was conducted and water samples were taken.

Bores 20636 and 20637 were pump tested. six hour constant discharge test and recovery test was conducted.

The water from bores 23449 and 23450 is of high chemical quality but has low pH. The water is suitable for domestic use after treatment to raise the pH to an acceptable level. If the water is not treated there is a possibility that metal water fittings will be corroded.

RECOMMENDATIONS FOR FINISHING, OPERATING AND PROTECTING GROUNDWATER BORES

Attention to the following points will ensure a long and safe life for the bore supply and help prevent pollution of the groundwater resource

1. Construct a concrete apron around the bore head to prevent surface flow, seepage and waste from entering the bore.
2. Seal the space between the casing and pump equipment to prevent entry of vermin, dirt and pollutants.
3. Maintain pumping equipment in good order to prevent pollution. Prevent spillage of fuel and on on the ground around the bore. Store fertilizer and other chemicals at least 50 m away.
4. Keep stock away from the bore head. Discourage domestic activity at the bore. The first tap on the pipeline should not be less than 5 m from the bore head.
5. Pumping the bore at higher than recommended rates may fork the bore leading to instability or pump maintenance problems. Seek the professional advice of an hydrogeologist or groundwater engineer.
6. If the bore is no longer required, the casing is to be removed or securely capped and the bore backfilied with clayey material. A cement plug may be required in some instances.
In addition, please ensure that the BORE IDENTIFICATION TAG is retained securely at all times. The registered bore number is Water Resources Division's only reference to the scientific and engineering data on this bore, and hence important to WRD's further advice to bore owners.

The above recommendations are based on a 24 hour test at $7.3 \mathrm{~L} / \mathrm{s}$ and assume that hodrologic conditions will not change with long term pumping.
This bore is capable of being pumping at higher rates by there is the possibility of sand intrusion at rates above the recommended $3 \mathrm{I} / \mathrm{s}$.

WATER RESOURCES DIVISION

TEST REPORT - BORE RN. 23450

Bore location: wast Alligator

Map: East Alligator 1:100 000
Grid reference: $764-250$

Clientowner: A. N.P. \& W.S.
Client's reference: Kakadu National Park Purpose of supply: Domestic

Map Sheet 5473

RECOMMENDATIONS

Pumping rate: $2.0 \quad$ Ls. Pump setting: $22.0 \quad \mathrm{~m}$ below ground level General recommendations are given on the reverse side.
The aquifer and bore oac/cannot sustain higher pumping rates with deeper pump settings or for short periods in favourable seasons. Further advice can be obtained from: Water Resources
(In all correspondence refer to the bore's RN number). Sasco House, Darwin

BORE DATA

Finished depth: 30.40 m Completion date: 5/7/85
Standing water level 3.41 m on $9 / 8 / 85$
Construction detalis:
Interval (m)
0 m to 11 m
0 m to 22.48 m
22.48 m to 23.98 m
23.98 m to 25.98 m 25.98 m to 30 m

AQUIFERTEST

AQUIFER TEST	
Test date: $14 / 8 / 85$	
Test rates: 2	L/s
Test duration 24	hrs

Description

203 Im Blank Steel Casing
152 ma Class 12 PVC Casing
$152 \mathrm{~mm}-0.503 \mathrm{~mm}$ inline stainless steel screens
$152 \mathrm{~mm}-0.762 \mathrm{~mm}$ inline stainless steel screens 152 mm Class 12 PVC Casing

Notes: 1. Top of casing as constructed was 0.51 m above ground
2. All depths are measured from natural ground level
3. Test rates are not indicative of sate long term pumping rates.

WARNING: MINIMUM INTERNAL BORE DIAMETER IS 152 mm

COMMENTS (EITHOLOGY)

0 mto 6 m
6 m to 12 m
12 mto 12.4 m
$12.4 \mathrm{~m} \div 021 \mathrm{~m}$

```
sandy clay
sandstone: yellow, pink
clay: pink, purple
sanastone
```


WATER QUALITY

RECOMMENDATIONS FOR FINISHING, OPERATING AND PROTECTING GROUNDWATER BORES

Attention to the following points will ensure a long and safe life for the bore supply and help prevent pollution of the groundwater resource.

1. Construct a concrete apron around the bore head to prevent surface flow, seepage and waste from entering the bore.
2. Seal the space between the casing and pump equipment to prevent entry of vermin, dirt and poliutants.
3. Maintain pumping equipment in good order to prevent pollution. Prevent spillage of fuel and oil on the ground around the bore. Store fertilizer and other chemicals at least 50 m away.
4. Keep stock away from the bore head. Discourage domestic activity at the bore. The first tap on the pipeline should not be less than 5 m from the bore head.
5. Pumping the bore at higher than recommended rates may fork the bore leading to instability or pump maintenance problems. Seek the professional advice of an hydrogeologist or groundwater engineer.
6. If the bore is no longer required, the casing is to be removed or securely capped and the bore backfilled with clayey material. A cement plug may be required in some instances.
In addition, please ensure that the BORE IDENTIFICATION TAG is retained securely at all times. The registered bore number is Water Resources Division's only reference to the scientific and engincering data on this bore, and hence important to WRD's further advice to bore owners.

WRD4020

RECOMMENDATIONS FOR FINISHING, OPERATING AND PROTECTING GROUNDWATER BORES

Attention to the following points will ensure a long and sate life for the bore supply and help prevent pollution of the groundwater resource.

1. Construct a concrete apron around the bore head to prevent surface flow, seepage and waste from entering the bore.
2. Seal the space between the casing and pump equipment to prevent entry of vermin, dirt and pollutants.
3. Maintain pumping equipment in good order to prevent pollution. Prevent spillage of fuel and oil on the ground around the bore. Store fertilizer and other chemicals at least 50 m away.
4. Keep stock away from the bore head. Discourage domestic activity at the bore. The first tap on the pipeline should not be less than 5 m from the bore head.
5. Pumping the bore at higher than recommended raies may fork the bore leading to instability or pump maintenance problems. Seek the professional advice of an hydrogeologist or groundwater engineer.
6. If the bore is no longer required, the casing is to be removed or securely capped and the bore backfilled with clayey material. A cement plug may be required in some instances.
In addition, please ensure that the BORE IDENTIFICATION TAG is retained securely at all times. The registered bore number is Water Resources Division's only reference to the scientific and engineering data on this bore, and hence important to WRD's further advice to bore owners.

This bore if pumped at higher rate will induce fine sand into system resulting in pump damage.

BORE LOCATION MAP

RECOMMENDATIONS FOR FINISHING, OPERATING AND PROTECTING GROUNDWATER BORES

Attention to the following points will ensure a long and safe life for the bore supply and help prevent pollution of the groundwater resource.

1. Construct a concrete apron around the bore head to prevent surface flow, seepage and waste from entering the bore.
2. Seal the space between the casing and pump equipment to prevent entry of vermin, dirt and pollutants.
3. Maintain pumping equipment in good order to prevent pollution. Prevent spillage of fuel and oil on the ground around the bore. Store fertilizer and other chemicals at least 50 m away.
4. Keep stock away from the bore head. Discourage domestic activity at the bore. The first tap on the pipeline should not be less than 5 m from the bore head.
5. Pumping the bore at higher than recommended rates may fork the bore leading to instability or pump maintenance problems. Seek the professional advice of an hydrogeologist or groundwater engineer.
6. If the bore is no longer required, the casing is to be removed or securely capped and the bore backfilled with clayey material. A cement plug may be required in some instances.
In addition, please ensure that the BORE IDENTIFICATION TAG is retained securely at all times. The registered bore number is Water Resources Division's only reference to the scientific and engineering data on this bore, and hence important to WRD's further advice to bore owners.

This bore if pumped any higher than recommended rate will induce fine sand resulting in pump damage.

THE SAMPLE AS ANALYSED COMPLIES DOES NOT COMPLY WITH NORTHERN TERRITORY DRINKING WATER STANDARDS AS RECOMMENDED BY THE NORTHERN TERRTORY DEPARTMENT OF HEAITH.

1

